-
相比于量子门电路模型, 基于测量的量子计算模型为实现普适量子计算提供了另一途径, 且经过近二十年的发展其内涵已得到了极大丰富. 本文对基于测量的量子计算模型的研究历史和现状进行综述. 首先简要介绍该模型的基本理论, 包括量子图态等资源态的概念和工作原理、模型的计算普适性和经典模拟方法、在相关量子信息处理领域的应用等. 接着从量子物理特性的角度概括基于测量的量子计算模型和量子多体系统之间的紧密联系, 包括量子纠缠、互文性、量子关联、对称保护拓扑序和量子物质相等作为计算资源所发挥的独特作用. 然后, 总结实现基于测量的量子计算模型的不同技术路线和实验成果. 这些理论和实验方面的进展是不断推动可扩展容错量子计算机研制的力量源泉. 最后, 对该领域未来的研究方向进行讨论和展望, 希望能启发读者进一步学习和探索相关课题.Compared with the quantum gate circuit model, the measurement-based quantum computing model provides an alternative way to realize universal quantum computation, and relevant contents have been greatly enriched after nearly two decades of research and exploration. In this article, we review the research history and status of the measurement-based quantum computing model. First, we briefly introduce the basic theories of this model, including the concept and working principles of quantum graph states as resource states, the model’s computational universality and classical simulation methods, and relevant applications in the field of quantum information processing such as designing quantum algorithms and fault-tolerant error correction schemes. Then, from the perspective of quantum physical properties, which include the specific roles of quantum entanglement, contextuality, quantum correlations, symmetry-protected topological order, and quantum phases of matter as computing resources, the close relationship between measurement-based quantum computing model and quantum many-body system is presented. For example, a type of measurement-based computing model for exploiting quantum correlations can show a quantum advantage over the classical local hidden variable models, or certain symmetry-protected topological order states enable the universal quantum computation to be conducted by using only the measurements of single-qubit Pauli operators. Next, a variety of different technical routes and experimental progress of realizing the measurement-based quantum computing model are summarized, such as photonic systems, ion traps, superconducting circuits, etc. These achievements in various physical areas lay the foundation for future scalable and fault-tolerant quantum computers. Finally, we discuss and prospect the future research directions in this field thereby inspiring readers to further study and explore the relevant subjects.
-
Keywords:
- quantum computation /
- quantum entanglement /
- quantum correlations /
- symmetry-protected topological order
[1] Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp1−12
[2] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A, Weinfurter H 1995 Phys. Rev. A 52 3457Google Scholar
[3] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar
[4] Raussendorf R, Browne D E, Briegel H J 2003 Phys. Rev. A 68 022312Google Scholar
[5] Prevedel R, Walther P, Tiefenbacher F, Böhi P, Kaltenbaek R, Jennewein T, Zeilinger A 2007 Nature 445 65Google Scholar
[6] Lanyon B, Jurcevic P, Zwerger M, Hempel C, Martinez E, Dür W, Briegel H, Blatt R, Roos C F 2013 Phys. Rev. Lett. 111 210501Google Scholar
[7] Tame M, Özdemir Ş, Koashi M, Imoto N, Kim M 2009 Phys. Rev. A 79 020302Google Scholar
[8] Tame M S, Prevedel R, Paternostro M, Böhi P, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 98 140501Google Scholar
[9] Tame M, Kim M 2010 Phys. Rev. A 82 030305Google Scholar
[10] Tame M S, Bell B A, Di Franco C, Wadsworth W J, Rarity J G 2014 Phys. Rev. Lett. 113 200501Google Scholar
[11] Bell B, Herrera-Martí D, Tame M, Markham D, Wadsworth W, Rarity J 2014 Nat. Commun. 5 3658Google Scholar
[12] Pathumsoot P, Matsuo T, Satoh T, Hajdušek M, Suwanna S, Van Meter R 2020 Phys. Rev. A 101 052301Google Scholar
[13] Hein M, Eisert J, Briegel H J 2004 Phys. Rev. A 69 062311Google Scholar
[14] Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19Google Scholar
[15] Preskill J 2018 Quantum 2 79Google Scholar
[16] Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar
[17] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar
[18] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar
[19] Gottesman D, Chuang I L 1999 Nature 402 390Google Scholar
[20] Perdrix S 2005 Int. J. Quantum Inf. 3 219Google Scholar
[21] Jorrand P, Perdrix S 2005 Proc. SPIE 5833 44Google Scholar
[22] Gross D, Eisert J 2007 Phys. Rev. Lett. 98 220503Google Scholar
[23] Gross D, Eisert J, Schuch N, Perez-Garcia D 2007 Phys. Rev. A 76 052315Google Scholar
[24] Danos V, Kashefi E 2006 Phys. Rev. A 74 052310Google Scholar
[25] van den Nest M, Dür W, Miyake A, Briegel H 2007 New J. Phys. 9 204Google Scholar
[26] Danos V, Kashefi E, Panangaden P 2007 J. ACM 54 8Google Scholar
[27] Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910Google Scholar
[28] Hein M, Dür W, Eisert J, Raussendorf R, Nest M, Briegel H J 2006 arXiv: 0602096 [quant-ph]
[29] Walther P, Resch K J, Rudolph T, et al. 2005 Nature 434 169Google Scholar
[30] Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar
[31] Van den Nest M, Miyake A, Dür W, Briegel H J 2006 Phys. Rev. Lett. 97 150504Google Scholar
[32] Nielsen M A 2006 Rep. Math. Phys. 57 147Google Scholar
[33] Browne D E, Rudolph T 2005 Phys. Rev. Lett. 95 010501Google Scholar
[34] Bell B, Tame M, Clark A, Nock R, Wadsworth W, Rarity J G 2013 New J. Phys. 15 053030Google Scholar
[35] Leung D W 2004 Int. J. Quantum Inf. 2 33Google Scholar
[36] Aliferis P, Leung D W 2004 Phys. Rev. A 70 062314Google Scholar
[37] Childs A M, Leung D W, Nielsen M A 2005 Phys. Rev. A 71 032318Google Scholar
[38] Verstraete F, Cirac J I 2004 Phys. Rev. A 70 060302Google Scholar
[39] Nielsen M A 2004 Phys. Rev. Lett. 93 040503Google Scholar
[40] Zwerger M, Briegel H, Dür W 2014 Sci. Rep. 4 5364Google Scholar
[41] Vidal G 2003 Phys. Rev. Lett. 91 147902Google Scholar
[42] Markov I L, Shi Y 2008 SIAM J. Comput. 38 963Google Scholar
[43] Jozsa R 2006 arXiv: 0603163 [quant-ph]
[44] Shi Y Y, Duan L M, Vidal G 2006 Phys. Rev. A 74 022320Google Scholar
[45] van den Nest M, Dür W, Vidal G, Briegel H J 2007 Phys. Rev. A 75 012337Google Scholar
[46] Yoran N, Short A J 2006 Phys. Rev. Lett. 96 170503Google Scholar
[47] Bravyi S, Raussendorf R 2007 Phys. Rev. A 76 022304Google Scholar
[48] Zhang S, Zhang Y, Sun Y, Sun H, Zhang X 2019 Opt. Express 27 436Google Scholar
[49] Chen M C, Li R, Gan L, Zhu X, Yang G, Lu C Y, Pan J W 2020 Phys. Rev. Lett. 124 080502Google Scholar
[50] Chen K, Li C M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A, Pan J W 2007 Phys. Rev. Lett. 99 120503Google Scholar
[51] Raussendorf R 2013 Phys. Rev. A 88 022322Google Scholar
[52] Oestereich A L, Galvão E F 2017 Phys. Rev. A 96 062305Google Scholar
[53] Raussendorf R, Briegel H J 2002 Quantum Inf. Comput. 2 443
[54] Broadbent A, Kashefi E 2009 Theor. Comput. Sci. 410 2489Google Scholar
[55] Browne D, Kashefi E, Perdrix S 2010 Conference on Quantum Computation, Communication, and Cryptography Leeds, UK, April 2010 pp35−46
[56] Raussendorf R 2003 Ph. D. Dissertation (Munich: LMU)
[57] Nielsen M A, Dawson C M 2005 Phys. Rev. A 71 042323Google Scholar
[58] Dawson C M, Haselgrove H L, Nielsen M A 2006 Phys. Rev. Lett. 96 020501Google Scholar
[59] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar
[60] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199Google Scholar
[61] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504Google Scholar
[62] Devitt S J, Fowler A G, Stephens A M, Greentree A D, Hollenberg L C, Munro W J, Nemoto K 2009 New J. Phys. 11 083032Google Scholar
[63] Herrera-Martí D A, Fowler A G, Jennings D, Rudolph T 2010 Phys. Rev. A 82 032332Google Scholar
[64] Yao X C, Wang T X, Chen H Z, et al. 2012 Nature 482 489Google Scholar
[65] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614Google Scholar
[66] Broadbent A, Fitzsimons J, Kashefi E 2009 Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science pp517−526
[67] Barz S, Kashefi E, Broadbent A, Fitzsimons J F, Zeilinger A, Walther P 2012 Science 335 303Google Scholar
[68] 田宇玲, 冯田峰, 周晓祺 2019 68 110302Google Scholar
Tian Y L, Feng T F, Zhou X Q 2019 Acta Phys. Sin. 68 110302Google Scholar
[69] Prevedel R, Stefanov A, Walther P, Zeilinger A 2007 New J. Phys. 9 205Google Scholar
[70] Azuma K, Tamaki K, Lo H K 2015 Nat. Commun. 6 6787Google Scholar
[71] Matsuo T, Satoh T, Nagayama S, Van Meter R 2018 Phys. Rev. A 97 062328Google Scholar
[72] van den Nest M, Dür W, Briegel H J 2008 Phys. Rev. Lett. 100 110501Google Scholar
[73] de las Cuevas G, Cubitt T S 2016 Science 351 1180Google Scholar
[74] Bermejo-Vega J, Hangleiter D, Schwarz M, Raussendorf R, Eisert J 2018 Phys. Rev. X 8 021010Google Scholar
[75] Miller J, Miyake A 2016 npj Quantum Inform. 2 16036Google Scholar
[76] Demirel B, Weng W, Thalacker C, Hoban M, Barz S 2021 npj Quantum Inform. 7 29Google Scholar
[77] Chen X, Zeng B, Gu Z C, Yoshida B, Chuang I L 2009 Phys. Rev. Lett. 102 220501Google Scholar
[78] Cai J, Miyake A, Dür W, Briegel H J 2010 Phys. Rev. A 82 052309Google Scholar
[79] Chen J, Chen X, Duan R, Ji Z, Zeng B 2011 Phys. Rev. A 83 050301Google Scholar
[80] Cai J M, Dür W, van den Nest M, Miyake A, Briegel H 2009 Phys. Rev. Lett. 103 050503Google Scholar
[81] Rossi M, Huber M, Bruß D, Macchiavello C 2013 New J. Phys. 15 113022Google Scholar
[82] Qu R, Wang J, Li Z S, Bao Y R 2013 Phys. Rev. A 87 022311Google Scholar
[83] Gachechiladze M, Budroni C, Gühne O 2016 Phys. Rev. Lett. 116 070401Google Scholar
[84] Gross D, Flammia S T, Eisert J 2009 Phys. Rev. Lett. 102 190501Google Scholar
[85] Bremner M J, Mora C, Winter A 2009 Phys. Rev. Lett. 102 190502Google Scholar
[86] Morimae T 2017 Phys. Rev. A 96 052308Google Scholar
[87] Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar
[88] Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351Google Scholar
[89] Anders J, Browne D E 2009 Phys. Rev. Lett. 102 050502Google Scholar
[90] Hoban M J, Wallman J J, Anwar H, Usher N, Raussendorf R, Browne D E 2014 Phys. Rev. Lett. 112 140505Google Scholar
[91] Hoban M J, Campbell E T, Loukopoulos K, Browne D E 2011 New J. Phys. 13 023014Google Scholar
[92] Abramsky S, Barbosa R S, Mansfield S 2017 Phys. Rev. Lett. 119 050504Google Scholar
[93] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar
[94] Gu Z C, Wen X G 2009 Phys. Rev. B 80 155131Google Scholar
[95] Pollmann F, Berg E, Turner A M, Oshikawa M 2012 Phys. Rev. B 85 075125Google Scholar
[96] Chen X, Gu Z C, Liu Z X, Wen X G 2012 Science 338 1604Google Scholar
[97] Chen X, Gu Z C, Liu Z X, Wen X G 2013 Phys. Rev. B 87 155114Google Scholar
[98] Else D V, Schwarz I, Bartlett S D, Doherty A C 2012 Phys. Rev. Lett. 108 240505Google Scholar
[99] Miller J, Miyake A 2015 Phys. Rev. Lett. 114 120506Google Scholar
[100] Raussendorf R, Wang D S, Prakash A, Wei T C, Stephen D T 2017 Phys. Rev. A 96 012302Google Scholar
[101] Nautrup H P, Wei T C 2015 Phys. Rev. A 92 052309Google Scholar
[102] Chen Y, Prakash A, Wei T C 2018 Phys. Rev. A 97 022305Google Scholar
[103] Raussendorf R, Okay C, Wang D S, Stephen D T, Nautrup H P 2019 Phys. Rev. Lett. 122 090501Google Scholar
[104] Stephen D T, Nautrup H P, Bermejo-Vega J, Eisert J, Raussendorf R 2019 Quantum 3 142Google Scholar
[105] Daniel A K, Alexander R N, Miyake A 2020 Quantum 4 228Google Scholar
[106] Choo K, Von Keyserlingk C, Regnault N, Neupert T 2018 Phys. Rev. Lett. 121 086808Google Scholar
[107] Azses D, Haenel R, Naveh Y, Raussendorf R, Sela E, Dalla Torre E G 2020 Phys. Rev. Lett. 125 120502Google Scholar
[108] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M, Imoto N 2008 Phys. Rev. Lett. 100 210501Google Scholar
[109] Gao W B, Xu P, Yao X C, et al. 2010 Phys. Rev. Lett. 104 020501Google Scholar
[110] Vallone G, Pomarico E, De Martini F, Mataloni P 2008 Phys. Rev. A 78 042335Google Scholar
[111] Barz S, Vasconcelos R, Greganti C, Zwerger M, Dür W, Briegel H J, Walther P 2014 Phys. Rev. A 90 042302Google Scholar
[112] Gao W B, Yao X C, Cai J M, Lu H, Xu P, Yang T, Lu C Y, Chen Y A, Chen Z B, Pan J W 2011 Nat. Photonics 5 117Google Scholar
[113] Reimer C, Sciara S, Roztocki P, et al. 2019 Nat. Phys. 15 148Google Scholar
[114] Ciampini M A, Orieux A, Paesani S, et al. 2016 Light Sci. Appl. 5 e16064Google Scholar
[115] Adcock J C, Vigliar C, Santagati R, Silverstone J W, Thompson M G 2019 Nat. Commun. 10 3528Google Scholar
[116] Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar
[117] Huang Y F, Ren X F, Zhang Y S, Duan L M, Guo G C 2004 Phys. Rev. Lett. 93 240501Google Scholar
[118] Xiang G Y, Li J, Guo G C 2005 Phys. Rev. A 71 044304Google Scholar
[119] Gao W B, Goebel A M, Lu C Y, et al. 2010 P. Nalt. Acad. Sci. 107 20869Google Scholar
[120] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502Google Scholar
[121] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828Google Scholar
[122] Su X, Jia X, Xie C, Peng K 2014 Sci. China Phys. Mech. 57 1210Google Scholar
[123] Qin Z, Gessner M, Ren Z, Deng X, Han D, Li W, Su X, Smerzi A, Peng K 2019 NPJ Quantum Inf. 5 3Google Scholar
[124] Ukai R, Iwata N, Shimokawa Y, et al. 2011 Phys. Rev. Lett. 106 240504Google Scholar
[125] Yokoyama S, Ukai R, Armstrong S C, et al. 2013 Nat. Photonics 7 982Google Scholar
[126] Yoshikawa J I, Yokoyama S, Kaji T, et al. 2016 APL Photonics 1 060801Google Scholar
[127] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091Google Scholar
[128] Wunderlich H, Wunderlich C, Singer K, Schmidt-Kaler F 2009 Phys. Rev. A 79 052324Google Scholar
[129] Stock R, James D F 2009 Phys. Rev. Lett. 102 170501Google Scholar
[130] Lanyon B P, Zwerger M, Jurcevic P, Hempel C, Dür W, Briegel H J, Blatt R, Roos C 2014 Phys. Rev. Lett. 112 100403Google Scholar
[131] You J, Wang X B, Tanamoto T, Nori F 2007 Phys. Rev. A 75 052319Google Scholar
[132] Zhang X, Gao K, Feng M 2006 Phys. Rev. A 74 024303Google Scholar
[133] Xue Z Y, Wang Z 2007 Phys. Rev. A 75 064303Google Scholar
[134] Xue Z Y, Zhang G, Dong P, Yi Y M, Cao Z L 2006 Eur. Phys. J. B 52 333Google Scholar
[135] Gong M, Chen M C, Zheng Y, et al. 2019 Phys. Rev. Lett. 122 110501Google Scholar
[136] Mooney G J, Hill C D, Hollenberg L C 2019 Sci. Rep. 9 13465Google Scholar
[137] Albarrán-Arriagada F, Barrios G A, Sanz M, et al. 2018 Phys. Rev. A 97 032320Google Scholar
[138] Vaucher B, Nunnenkamp A, Jaksch D 2008 New J. Phys. 10 023005Google Scholar
[139] Mamaev M, Blatt R, Ye J, Rey A M 2019 Phys. Rev. Lett. 122 160402Google Scholar
[140] Economou S E, Lindner N, Rudolph T 2010 Phys. Rev. Lett. 105 093601Google Scholar
[141] Gimeno-Segovia M, Rudolph T, Economou S E 2019 Phys. Rev. Lett. 123 070501Google Scholar
[142] Ju C, Zhu J, Peng X, Chong B, Zhou X, Du J 2010 Phys. Rev. A 81 012322Google Scholar
[143] Blythe P, Varcoe B 2006 New J. Phys. 8 231Google Scholar
[144] Takeuchi Y, Morimae T, Hayashi M 2019 Sci. Rep. 9 13585Google Scholar
[145] Gachechiladze M, Gühne O, Miyake A 2019 Phys. Rev. A 99 052304Google Scholar
[146] Mansfield S, Kashefi E 2018 Phys. Rev. Lett. 121 230401Google Scholar
[147] Frembs M, Roberts S, Bartlett S D 2018 New J. Phys. 20 103011Google Scholar
[148] Hu F, Lamata L, Wang C, Chen X, Solano E, Sanz M 2020 Phys. Rev. Appl. 13 054062Google Scholar
[149] Yan S, Qi H, Cui W 2020 Phys. Rev. A 102 052421Google Scholar
[150] Devakul T, Williamson D J 2018 Phys. Rev. A 98 022332Google Scholar
[151] Wei T C, Affleck I, Raussendorf R 2011 Phys. Rev. Lett. 106 070501Google Scholar
-
图 2 单向量子计算执行量子门操作 (a)输入态
$ \left| + \right\rangle $ 经过${R_z}( - \alpha )$ 旋转和Hadamard门作用; (b)以测量纠缠态的方式等价地实现(a); (c)为(b)的扩展, 制备并测量4-qubit线性簇态以实现任意的单量子比特旋转门; (d)以4-qubit星形簇态执行CNOT门Fig. 2. Realization of quantum gates in the 1 WQC model: (a) Input state
$ \left| + \right\rangle $ undergoes a${R_z}( - \alpha )$ rotation and a Hadamard gate; (b) a circuit equivalent to (a) by measuring an entangled state; (c) a generalization of (b) to prepare and measure a 4-qubit linear cluster state for implementing arbitrary single-qubit rotation gates; (d) a circuit performing the CNOT gate via a star cluster state.图 3 基于传态的方案实现单量子比特门 (a)一方远程制备态
$U\left| \alpha \right\rangle $ 并通过Bell测量和泡利修正传给另一方, 注意U和Bell测量可以直接合并成新的联合测量; (b)利用制备好的资源态$(I \otimes U)\left| {{\beta _{{\text{00}}}}} \right\rangle $ 来间接执行$U\left| \alpha \right\rangle $ Fig. 3. Teleportation-based scheme for implementing any sing-qubit gate: (a) State
$U\left| \alpha \right\rangle $ is remotely prepared at one site and teleported to another site via Bell measurement and Pauli corrections, note here U and Bell measurement can be directly combined into a new joint measurement; (b) the scheme to indirectly implement$U\left| \alpha \right\rangle $ via a prepared resource state$(I \otimes U)\left| {{\beta _{{\text{00}}}}} \right\rangle $ .图 4 利用关联的计算模型. 经典控制计算机提供k个测量设置中的1个作为对关联多方资源态中个体的经典输入(蓝色箭头), 并且接收l个测量结果中的1个(红色箭头)作为输出
Fig. 4. A computational model exploiting correlations. The classical control computer provides one of k measurement settings as the classical input (blue arrows) to each of the parties in the correlated resource state and receives one of l possible measurement results (red arrows) as the output.
-
[1] Nielsen M A, Chuang I L 2010 Quantum Computation and Quantum Information (New York: Cambridge University Press) pp1−12
[2] Barenco A, Bennett C H, Cleve R, DiVincenzo D P, Margolus N, Shor P, Sleator T, Smolin J A, Weinfurter H 1995 Phys. Rev. A 52 3457Google Scholar
[3] Raussendorf R, Briegel H J 2001 Phys. Rev. Lett. 86 5188Google Scholar
[4] Raussendorf R, Browne D E, Briegel H J 2003 Phys. Rev. A 68 022312Google Scholar
[5] Prevedel R, Walther P, Tiefenbacher F, Böhi P, Kaltenbaek R, Jennewein T, Zeilinger A 2007 Nature 445 65Google Scholar
[6] Lanyon B, Jurcevic P, Zwerger M, Hempel C, Martinez E, Dür W, Briegel H, Blatt R, Roos C F 2013 Phys. Rev. Lett. 111 210501Google Scholar
[7] Tame M, Özdemir Ş, Koashi M, Imoto N, Kim M 2009 Phys. Rev. A 79 020302Google Scholar
[8] Tame M S, Prevedel R, Paternostro M, Böhi P, Kim M, Zeilinger A 2007 Phys. Rev. Lett. 98 140501Google Scholar
[9] Tame M, Kim M 2010 Phys. Rev. A 82 030305Google Scholar
[10] Tame M S, Bell B A, Di Franco C, Wadsworth W J, Rarity J G 2014 Phys. Rev. Lett. 113 200501Google Scholar
[11] Bell B, Herrera-Martí D, Tame M, Markham D, Wadsworth W, Rarity J 2014 Nat. Commun. 5 3658Google Scholar
[12] Pathumsoot P, Matsuo T, Satoh T, Hajdušek M, Suwanna S, Van Meter R 2020 Phys. Rev. A 101 052301Google Scholar
[13] Hein M, Eisert J, Briegel H J 2004 Phys. Rev. A 69 062311Google Scholar
[14] Briegel H J, Browne D E, Dür W, Raussendorf R, Van den Nest M 2009 Nat. Phys. 5 19Google Scholar
[15] Preskill J 2018 Quantum 2 79Google Scholar
[16] Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar
[17] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar
[18] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H, Zeilinger A 1997 Nature 390 575Google Scholar
[19] Gottesman D, Chuang I L 1999 Nature 402 390Google Scholar
[20] Perdrix S 2005 Int. J. Quantum Inf. 3 219Google Scholar
[21] Jorrand P, Perdrix S 2005 Proc. SPIE 5833 44Google Scholar
[22] Gross D, Eisert J 2007 Phys. Rev. Lett. 98 220503Google Scholar
[23] Gross D, Eisert J, Schuch N, Perez-Garcia D 2007 Phys. Rev. A 76 052315Google Scholar
[24] Danos V, Kashefi E 2006 Phys. Rev. A 74 052310Google Scholar
[25] van den Nest M, Dür W, Miyake A, Briegel H 2007 New J. Phys. 9 204Google Scholar
[26] Danos V, Kashefi E, Panangaden P 2007 J. ACM 54 8Google Scholar
[27] Briegel H J, Raussendorf R 2001 Phys. Rev. Lett. 86 910Google Scholar
[28] Hein M, Dür W, Eisert J, Raussendorf R, Nest M, Briegel H J 2006 arXiv: 0602096 [quant-ph]
[29] Walther P, Resch K J, Rudolph T, et al. 2005 Nature 434 169Google Scholar
[30] Lu C Y, Zhou X Q, Gühne O, Gao W B, Zhang J, Yuan Z S, Goebel A, Yang T, Pan J W 2007 Nat. Phys. 3 91Google Scholar
[31] Van den Nest M, Miyake A, Dür W, Briegel H J 2006 Phys. Rev. Lett. 97 150504Google Scholar
[32] Nielsen M A 2006 Rep. Math. Phys. 57 147Google Scholar
[33] Browne D E, Rudolph T 2005 Phys. Rev. Lett. 95 010501Google Scholar
[34] Bell B, Tame M, Clark A, Nock R, Wadsworth W, Rarity J G 2013 New J. Phys. 15 053030Google Scholar
[35] Leung D W 2004 Int. J. Quantum Inf. 2 33Google Scholar
[36] Aliferis P, Leung D W 2004 Phys. Rev. A 70 062314Google Scholar
[37] Childs A M, Leung D W, Nielsen M A 2005 Phys. Rev. A 71 032318Google Scholar
[38] Verstraete F, Cirac J I 2004 Phys. Rev. A 70 060302Google Scholar
[39] Nielsen M A 2004 Phys. Rev. Lett. 93 040503Google Scholar
[40] Zwerger M, Briegel H, Dür W 2014 Sci. Rep. 4 5364Google Scholar
[41] Vidal G 2003 Phys. Rev. Lett. 91 147902Google Scholar
[42] Markov I L, Shi Y 2008 SIAM J. Comput. 38 963Google Scholar
[43] Jozsa R 2006 arXiv: 0603163 [quant-ph]
[44] Shi Y Y, Duan L M, Vidal G 2006 Phys. Rev. A 74 022320Google Scholar
[45] van den Nest M, Dür W, Vidal G, Briegel H J 2007 Phys. Rev. A 75 012337Google Scholar
[46] Yoran N, Short A J 2006 Phys. Rev. Lett. 96 170503Google Scholar
[47] Bravyi S, Raussendorf R 2007 Phys. Rev. A 76 022304Google Scholar
[48] Zhang S, Zhang Y, Sun Y, Sun H, Zhang X 2019 Opt. Express 27 436Google Scholar
[49] Chen M C, Li R, Gan L, Zhu X, Yang G, Lu C Y, Pan J W 2020 Phys. Rev. Lett. 124 080502Google Scholar
[50] Chen K, Li C M, Zhang Q, Chen Y A, Goebel A, Chen S, Mair A, Pan J W 2007 Phys. Rev. Lett. 99 120503Google Scholar
[51] Raussendorf R 2013 Phys. Rev. A 88 022322Google Scholar
[52] Oestereich A L, Galvão E F 2017 Phys. Rev. A 96 062305Google Scholar
[53] Raussendorf R, Briegel H J 2002 Quantum Inf. Comput. 2 443
[54] Broadbent A, Kashefi E 2009 Theor. Comput. Sci. 410 2489Google Scholar
[55] Browne D, Kashefi E, Perdrix S 2010 Conference on Quantum Computation, Communication, and Cryptography Leeds, UK, April 2010 pp35−46
[56] Raussendorf R 2003 Ph. D. Dissertation (Munich: LMU)
[57] Nielsen M A, Dawson C M 2005 Phys. Rev. A 71 042323Google Scholar
[58] Dawson C M, Haselgrove H L, Nielsen M A 2006 Phys. Rev. Lett. 96 020501Google Scholar
[59] Raussendorf R, Harrington J, Goyal K 2006 Ann. Phys. 321 2242Google Scholar
[60] Raussendorf R, Harrington J, Goyal K 2007 New J. Phys. 9 199Google Scholar
[61] Raussendorf R, Harrington J 2007 Phys. Rev. Lett. 98 190504Google Scholar
[62] Devitt S J, Fowler A G, Stephens A M, Greentree A D, Hollenberg L C, Munro W J, Nemoto K 2009 New J. Phys. 11 083032Google Scholar
[63] Herrera-Martí D A, Fowler A G, Jennings D, Rudolph T 2010 Phys. Rev. A 82 032332Google Scholar
[64] Yao X C, Wang T X, Chen H Z, et al. 2012 Nature 482 489Google Scholar
[65] Fukui K, Asavanant W, Furusawa A 2020 Phys. Rev. A 102 032614Google Scholar
[66] Broadbent A, Fitzsimons J, Kashefi E 2009 Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science pp517−526
[67] Barz S, Kashefi E, Broadbent A, Fitzsimons J F, Zeilinger A, Walther P 2012 Science 335 303Google Scholar
[68] 田宇玲, 冯田峰, 周晓祺 2019 68 110302Google Scholar
Tian Y L, Feng T F, Zhou X Q 2019 Acta Phys. Sin. 68 110302Google Scholar
[69] Prevedel R, Stefanov A, Walther P, Zeilinger A 2007 New J. Phys. 9 205Google Scholar
[70] Azuma K, Tamaki K, Lo H K 2015 Nat. Commun. 6 6787Google Scholar
[71] Matsuo T, Satoh T, Nagayama S, Van Meter R 2018 Phys. Rev. A 97 062328Google Scholar
[72] van den Nest M, Dür W, Briegel H J 2008 Phys. Rev. Lett. 100 110501Google Scholar
[73] de las Cuevas G, Cubitt T S 2016 Science 351 1180Google Scholar
[74] Bermejo-Vega J, Hangleiter D, Schwarz M, Raussendorf R, Eisert J 2018 Phys. Rev. X 8 021010Google Scholar
[75] Miller J, Miyake A 2016 npj Quantum Inform. 2 16036Google Scholar
[76] Demirel B, Weng W, Thalacker C, Hoban M, Barz S 2021 npj Quantum Inform. 7 29Google Scholar
[77] Chen X, Zeng B, Gu Z C, Yoshida B, Chuang I L 2009 Phys. Rev. Lett. 102 220501Google Scholar
[78] Cai J, Miyake A, Dür W, Briegel H J 2010 Phys. Rev. A 82 052309Google Scholar
[79] Chen J, Chen X, Duan R, Ji Z, Zeng B 2011 Phys. Rev. A 83 050301Google Scholar
[80] Cai J M, Dür W, van den Nest M, Miyake A, Briegel H 2009 Phys. Rev. Lett. 103 050503Google Scholar
[81] Rossi M, Huber M, Bruß D, Macchiavello C 2013 New J. Phys. 15 113022Google Scholar
[82] Qu R, Wang J, Li Z S, Bao Y R 2013 Phys. Rev. A 87 022311Google Scholar
[83] Gachechiladze M, Budroni C, Gühne O 2016 Phys. Rev. Lett. 116 070401Google Scholar
[84] Gross D, Flammia S T, Eisert J 2009 Phys. Rev. Lett. 102 190501Google Scholar
[85] Bremner M J, Mora C, Winter A 2009 Phys. Rev. Lett. 102 190502Google Scholar
[86] Morimae T 2017 Phys. Rev. A 96 052308Google Scholar
[87] Brunner N, Cavalcanti D, Pironio S, Scarani V, Wehner S 2014 Rev. Mod. Phys. 86 419Google Scholar
[88] Howard M, Wallman J, Veitch V, Emerson J 2014 Nature 510 351Google Scholar
[89] Anders J, Browne D E 2009 Phys. Rev. Lett. 102 050502Google Scholar
[90] Hoban M J, Wallman J J, Anwar H, Usher N, Raussendorf R, Browne D E 2014 Phys. Rev. Lett. 112 140505Google Scholar
[91] Hoban M J, Campbell E T, Loukopoulos K, Browne D E 2011 New J. Phys. 13 023014Google Scholar
[92] Abramsky S, Barbosa R S, Mansfield S 2017 Phys. Rev. Lett. 119 050504Google Scholar
[93] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505Google Scholar
[94] Gu Z C, Wen X G 2009 Phys. Rev. B 80 155131Google Scholar
[95] Pollmann F, Berg E, Turner A M, Oshikawa M 2012 Phys. Rev. B 85 075125Google Scholar
[96] Chen X, Gu Z C, Liu Z X, Wen X G 2012 Science 338 1604Google Scholar
[97] Chen X, Gu Z C, Liu Z X, Wen X G 2013 Phys. Rev. B 87 155114Google Scholar
[98] Else D V, Schwarz I, Bartlett S D, Doherty A C 2012 Phys. Rev. Lett. 108 240505Google Scholar
[99] Miller J, Miyake A 2015 Phys. Rev. Lett. 114 120506Google Scholar
[100] Raussendorf R, Wang D S, Prakash A, Wei T C, Stephen D T 2017 Phys. Rev. A 96 012302Google Scholar
[101] Nautrup H P, Wei T C 2015 Phys. Rev. A 92 052309Google Scholar
[102] Chen Y, Prakash A, Wei T C 2018 Phys. Rev. A 97 022305Google Scholar
[103] Raussendorf R, Okay C, Wang D S, Stephen D T, Nautrup H P 2019 Phys. Rev. Lett. 122 090501Google Scholar
[104] Stephen D T, Nautrup H P, Bermejo-Vega J, Eisert J, Raussendorf R 2019 Quantum 3 142Google Scholar
[105] Daniel A K, Alexander R N, Miyake A 2020 Quantum 4 228Google Scholar
[106] Choo K, Von Keyserlingk C, Regnault N, Neupert T 2018 Phys. Rev. Lett. 121 086808Google Scholar
[107] Azses D, Haenel R, Naveh Y, Raussendorf R, Sela E, Dalla Torre E G 2020 Phys. Rev. Lett. 125 120502Google Scholar
[108] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M, Imoto N 2008 Phys. Rev. Lett. 100 210501Google Scholar
[109] Gao W B, Xu P, Yao X C, et al. 2010 Phys. Rev. Lett. 104 020501Google Scholar
[110] Vallone G, Pomarico E, De Martini F, Mataloni P 2008 Phys. Rev. A 78 042335Google Scholar
[111] Barz S, Vasconcelos R, Greganti C, Zwerger M, Dür W, Briegel H J, Walther P 2014 Phys. Rev. A 90 042302Google Scholar
[112] Gao W B, Yao X C, Cai J M, Lu H, Xu P, Yang T, Lu C Y, Chen Y A, Chen Z B, Pan J W 2011 Nat. Photonics 5 117Google Scholar
[113] Reimer C, Sciara S, Roztocki P, et al. 2019 Nat. Phys. 15 148Google Scholar
[114] Ciampini M A, Orieux A, Paesani S, et al. 2016 Light Sci. Appl. 5 e16064Google Scholar
[115] Adcock J C, Vigliar C, Santagati R, Silverstone J W, Thompson M G 2019 Nat. Commun. 10 3528Google Scholar
[116] Knill E, Laflamme R, Milburn G J 2001 Nature 409 46Google Scholar
[117] Huang Y F, Ren X F, Zhang Y S, Duan L M, Guo G C 2004 Phys. Rev. Lett. 93 240501Google Scholar
[118] Xiang G Y, Li J, Guo G C 2005 Phys. Rev. A 71 044304Google Scholar
[119] Gao W B, Goebel A M, Lu C Y, et al. 2010 P. Nalt. Acad. Sci. 107 20869Google Scholar
[120] Su X, Tan A, Jia X, Zhang J, Xie C, Peng K 2007 Phys. Rev. Lett. 98 070502Google Scholar
[121] Su X, Hao S, Deng X, Ma L, Wang M, Jia X, Xie C, Peng K 2013 Nat. Commun. 4 2828Google Scholar
[122] Su X, Jia X, Xie C, Peng K 2014 Sci. China Phys. Mech. 57 1210Google Scholar
[123] Qin Z, Gessner M, Ren Z, Deng X, Han D, Li W, Su X, Smerzi A, Peng K 2019 NPJ Quantum Inf. 5 3Google Scholar
[124] Ukai R, Iwata N, Shimokawa Y, et al. 2011 Phys. Rev. Lett. 106 240504Google Scholar
[125] Yokoyama S, Ukai R, Armstrong S C, et al. 2013 Nat. Photonics 7 982Google Scholar
[126] Yoshikawa J I, Yokoyama S, Kaji T, et al. 2016 APL Photonics 1 060801Google Scholar
[127] Cirac J I, Zoller P 1995 Phys. Rev. Lett. 74 4091Google Scholar
[128] Wunderlich H, Wunderlich C, Singer K, Schmidt-Kaler F 2009 Phys. Rev. A 79 052324Google Scholar
[129] Stock R, James D F 2009 Phys. Rev. Lett. 102 170501Google Scholar
[130] Lanyon B P, Zwerger M, Jurcevic P, Hempel C, Dür W, Briegel H J, Blatt R, Roos C 2014 Phys. Rev. Lett. 112 100403Google Scholar
[131] You J, Wang X B, Tanamoto T, Nori F 2007 Phys. Rev. A 75 052319Google Scholar
[132] Zhang X, Gao K, Feng M 2006 Phys. Rev. A 74 024303Google Scholar
[133] Xue Z Y, Wang Z 2007 Phys. Rev. A 75 064303Google Scholar
[134] Xue Z Y, Zhang G, Dong P, Yi Y M, Cao Z L 2006 Eur. Phys. J. B 52 333Google Scholar
[135] Gong M, Chen M C, Zheng Y, et al. 2019 Phys. Rev. Lett. 122 110501Google Scholar
[136] Mooney G J, Hill C D, Hollenberg L C 2019 Sci. Rep. 9 13465Google Scholar
[137] Albarrán-Arriagada F, Barrios G A, Sanz M, et al. 2018 Phys. Rev. A 97 032320Google Scholar
[138] Vaucher B, Nunnenkamp A, Jaksch D 2008 New J. Phys. 10 023005Google Scholar
[139] Mamaev M, Blatt R, Ye J, Rey A M 2019 Phys. Rev. Lett. 122 160402Google Scholar
[140] Economou S E, Lindner N, Rudolph T 2010 Phys. Rev. Lett. 105 093601Google Scholar
[141] Gimeno-Segovia M, Rudolph T, Economou S E 2019 Phys. Rev. Lett. 123 070501Google Scholar
[142] Ju C, Zhu J, Peng X, Chong B, Zhou X, Du J 2010 Phys. Rev. A 81 012322Google Scholar
[143] Blythe P, Varcoe B 2006 New J. Phys. 8 231Google Scholar
[144] Takeuchi Y, Morimae T, Hayashi M 2019 Sci. Rep. 9 13585Google Scholar
[145] Gachechiladze M, Gühne O, Miyake A 2019 Phys. Rev. A 99 052304Google Scholar
[146] Mansfield S, Kashefi E 2018 Phys. Rev. Lett. 121 230401Google Scholar
[147] Frembs M, Roberts S, Bartlett S D 2018 New J. Phys. 20 103011Google Scholar
[148] Hu F, Lamata L, Wang C, Chen X, Solano E, Sanz M 2020 Phys. Rev. Appl. 13 054062Google Scholar
[149] Yan S, Qi H, Cui W 2020 Phys. Rev. A 102 052421Google Scholar
[150] Devakul T, Williamson D J 2018 Phys. Rev. A 98 022332Google Scholar
[151] Wei T C, Affleck I, Raussendorf R 2011 Phys. Rev. Lett. 106 070501Google Scholar
计量
- 文章访问数: 9985
- PDF下载量: 743
- 被引次数: 0