搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三味中微子振荡的量子资源特性研究综述

王光杰 宋学科 叶柳 王栋

引用本文:
Citation:

三味中微子振荡的量子资源特性研究综述

王光杰, 宋学科, 叶柳, 王栋

Review on the study of the characteristics of quantum resources in three-flavor neutrino oscillations

WANG Guangjie, SONG Xueke, YE Liu, WANG Dong
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 中微子振荡是一个有趣的物理现象,其量子性能够在宏观距离的振荡上得以保持并被检测到。研究中微子振荡的量子资源特性是一个值得探索的主题,这种在粒子物理学和量子信息学之间建立起的联系,对于研究这些基本粒子的基本性质以及探索将中微子作为一种资源应用于量子信息处理的可能性而言,都有着重要意义。因此,中微子物理学与量子信息理论的交叉研究受到了越来越多的关注。这篇综述主要介绍了利用量子资源理论来表征三味中微子振荡的量子资源特性,主要包括量子纠缠、量子相干、量子非局域性和熵不确定度等。除此之外,本文还介绍了三味中微子振荡中的量子资源理论的权衡关系,主要基于单配性关系和完全互补性关系,这些权衡关系可以帮助我们有效理解量子资源如何在中微子振荡中转化和分配。中微子振荡的量子信息理论研究仍处于不断发展中,期望本综述能为该领域的发展带来启示。
    Investigating the quantum resources of neutrino oscillations is a worthy topic to be explored. This review mainly introduces the use of quantum resource theory to characterize the quantum resource characteristics of three-flavor neutrino oscillations. It is found that the specific evolutionary patterns of different entanglement measures in three-flavor neutrino oscillations. In addition, by comparing the cases of different entanglement evolutions, the optimal method for quantifying entanglement in three-flavor neutrino oscillations can be obtained. Morever, it also focuses on the quantifying the quantumness of experimentally observed neutrino oscillation using the 11-norm of coherence. It is found that the maximal coherence was observed in the neutrino source from the KamLAND reactor.Furthermore, we examine the violation of the Mermin inequality and Svetlichny inequality to study the nonlocality in three-flavor neutrino oscillations. It is shown that even though the genuine tripartite nonlocal correlation is usually present, there are specific time regions when it vanishes. In addition, this article also presents the trade-off relations in the quantum resource theory of three-flavor neutrino oscillations, mainly based on monogamy relations, complete complementarity relations. It is hoped that this review can bring inspiration to the development of this field.
  • [1]

    Pontecorvo B 1958 Sov. Phys. JETP 7 172 1958

    [2]

    Maki Z, Nakagawa M, Sakata S 1962 Prog. Theor. Phys. 28 870

    [3]

    Ahmad Q R (SNO Collaboration) 2002 Phys. Rev. Lett. 89 011302

    [4]

    Altmann M, Balata M, Belli P 2005 Phys. Lett. B 616 174

    [5]

    Fukuda S, Fukuda Y, Ishitsuka M 2002 Phys. Lett. B 539 179

    [6]

    Araki T, Eguchi K, Enomoto S 2005 Phys. Rev. Lett. 94 081801

    [7]

    An F P, Bai J Z, Balantekin A B 2012 Phys. Rev. Lett. 108 171803

    [8]

    Ahn M H, Aliu E, Andringa S 2006 Phys. Rev. D 74 072003

    [9]

    Adamson P 2008 Phys. Rev. Lett. 101 131802

    [10]

    An F P, Balantekin A B, Band H R 2015 Phys. Rev. Lett. 115 111802

    [11]

    Minakata H, Smirnov A Y 2012 Phys. Rev. D 85 113006

    [12]

    Gando A, Gando Y, Hanakago H 2013 Phys. Rev. D 88 033001

    [13]

    Emary G, Lambert N, Nori F 2014 Rep. Prog. Phys. 77 039501

    [14]

    Gangopadhyay D, Home D, Roy A S 2013 Phys. Rev. A 88 022115

    [15]

    Chitambar E, Gour G 2019 Rev. Mod. Phys. 91 025001

    [16]

    Devetak I, Harrow A W, Winter, A J, Trans IEEE 2008 Inf. Theory 54 4587

    [17]

    Horodecki M, Oppenheim J 2013 Int. J. Mod. Phys. B 27 1345019

    [18]

    Sudha, Usha Devi A R, Rajagopal A K 2012 Phys. Rev. A 85 012103

    [19]

    Bai Y K, Zhang N, Ye M Y, Wang Z D 2013 Phys. Rev. A 88 012123

    [20]

    Yao Y, Xiao X, Ge L, Sun P C 2015 Phys. Rev. A 92 01211227

    [21]

    Qin H H, Fei S M, Ge L, Sun P C 2015 Phys. Rev. A 92 012112

    [22]

    Hu M L, Hu X, Wang J, Peng Y, Zhang Y R, Fan H 2018 Phys. Rep. 762 1-100

    [23]

    Vedral V, Plenio M B, Rippin M A, Knight P L 1997 Phys. Rev. Lett. 78 2275

    [24]

    Baumgratz T, Cramer M, Plenio M B 2014 Phys. Rev. Lett. 113 140401

    [25]

    Bancal J D, Branciard, C, Gisin, N, Pironio S 2009 Phys. Rev. Lett. 103 090503

    [26]

    Bennett C H, Brassard, C, Crépeau, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [27]

    He Q, Rosales-Zárate L, Adesso G, Reid M D 2015 Phys. Rev. Lett. 115 180502

    [28]

    Horodecki R, Horodecki P, Horodecki M 2009, Rev. Mod. Phys. 81 865

    [29]

    Ekert A K 1991 Phys. Rev. Lett. 67 661

    [30]

    Raussendorf R, Briegel J H 2001 Phys. Rev. Lett. 86 5188

    [31]

    Albash T, Lidar A D, 2018 Rev. Mod. Phys. 90 015002

    [32]

    Beaudry J N, Lucamarini M, Mancini S, Renner R 2013 Phys. Rev. A 88 062303

    [33]

    Ma X F, Zeng P, Zhou H Y 2018 Phys. Rev. X 8 031043

    [34]

    Coffman V, Kundu J, Wootters W K 2000 Phys. Rev. A 61 052306

    [35]

    Kim J S, Das A, Sanders B C 2009 Phys. Rev. A 79 012329

    [36]

    Greenberger D M, Yasin A 1988 Phys. Rev. A 128 391

    [37]

    Jaeger G, Horne M A, Shimony A 1993 Phys. Rev. A 48 1023

    [38]

    Gangopadhyay D, Home D, Roy A S 2013 Phys. Rev. A 88 022115

    [39]

    Cerf N J, Bourennane M, Karlsson A, Gisin N 2002 Phys. Rev. Lett. 88 127903

    [40]

    Fu Q, Chen X 2017 Eur. Phys. J. C 77 775

    [41]

    Song X K, Huang Y Q, Ling J J, Yung M H 2018 Phys. Rev. A 98 050302(R)28

    [42]

    Dixit K, Alok A K 2021 Eur. Phys. J. Plus 136 334

    [43]

    Askaripour Ravari Z A, Ettefaghi M M, Miraboutalebi S 2022 Eur. Phys. J. Plus 137 488

    [44]

    Ming F, Fang B L, Hu X Y, Yu Y 2024 Eur. Phys. J. Plus 139 229

    [45]

    Kurashvili P, Chotorlishvili L, Kouzakov K 2021 Eur. Phys. J. C 81 323

    [46]

    Ettefaghi M M, Askaripour Ravari Z 2023 Eur. Phys. J. C 83 417

    [47]

    Blasone M, Dell.Anno F, De Siena S, Illuminati F 2009 Eur. Phys. Lett. 85 50002

    [48]

    Blasone M, Dell.Anno F, Di Mauro M, De Siena S, Illuminati F 2008 Phys. Rev. D 77 096002

    [49]

    Bittencourt V A S V, Blasone M, Zanfardino G 2023 J. Phys. Conf. Ser. 2533 012024

    [50]

    Alok A K, Banarjee S, Sankar S U, 2016 J. Nucl. Phys. B 909 65

    [51]

    Banarjee S, Alok A K, Srikanth R, Hiesmayr B C 2015 Eur. Phys. J. C 75(10) 487

    [52]

    Li Y W, Li L J, Song X K, Wang D 2022 Eur. Phys. J. C 82 799

    [53]

    Illuminati F 2015 Eur. Phys. Lett. 112 20007

    [54]

    Das T, Singha Roy S, Bagchi S 2016 Phys. Rev. A 94 022336

    [55]

    Sadhukhan D, Singha Roy S, Pal A K 2017 Phys. Rev. A 95 022301

    [56]

    Ou Y C, Fan H 2007 Phys. Rev. A 75 062308

    [57]

    Ma Z H, Chen Z H, Chen J. L 2011 Phys. Rev. A 83 062325

    [58]

    Xie S B, Eberly J H 2021 Phys. Rev. Lett. 127 040403

    [59]

    Blasone M, Dell.Anno F, De Siena S, Matrella C 2024 Eur. Phys. J. C 84 301

    [60]

    Ming F, Song X K, Li L J, Wang D 2020 Eur. Phys. J. C 80 275

    [61]

    Banerjee S, Alok A K, Srikanth R, Hiesmayr B C 2015 Eur. Phys. J. C 75 487

    [62]

    Dixit K, Naikoo J, Mukhopadhyay B, Banerjee S 2019 Phys. Rev. D 100 05502129

    [63]

    Li Y W, Li L J, Song X K, Wang D 2022 Eur. Phys. J. Plus 137 1267

    [64]

    Wang G J, Li L J, Wu T, Song X K, Ye L, Wang D 2024 Eur. Phys. J. C 84 1127

    [65]

    Blasone M, De Siena S, Matrella1 C 2021 Eur. Phys. J. C 81 660

    [66]

    Blasone M, De Siena S, Matrella1 C 2022 Eur. Phys. J. Plus 137 1272

    [67]

    Wang D, Ming F, Song X K, Ye L, Chen J L 2020 Eur. Phys. J. C 80 800

    [68]

    Li L J, Ming F, Song X K, Ye L, Wang D 2021 Eur. Phys. J. C 81 728

    [69]

    Wang G J, Li Y W, Li L J, Song X K, Wang D 2023 Eur. Phys. J. C 83 801

    [70]

    Bittencourt V A S V, Blasone M, DeSiena S, Matrella C 2022 Eur. Phys. J. C 82 566

    [71]

    Bilenky S M, Pontecorvo B 1978 Phys. Rev. 41(4) 225-261

    [72]

    Giunti C 2007 J. Phys. G: Nucl. Part. Phys. 34 R93

    [73]

    Chakraborty P, Dey M, Roy S 2024 J. Phys. G: Nucl. Part. Phys. 51 015003

    [74]

    Gonzalez-Garcia M C, Maltoni M, Schwetz T 2014 J. High Energy Phys. 11 052

    [75]

    Giunti C, Found 2004 Phys. Rev. Lett. 17 103

    [76]

    Giunti C, Kim C W 1998 Phys. Rev. D 58(1) 017301

    [77]

    Blasone M, Dell.Anno F, De Siena S, Illuminati F 2015 Euro Phys. Lett. 112(2) 20007

    [78]

    Peres A 1996 Phys. Rev. Lett. 77 1413

    [79]

    Guo Y, Zhang L 2020 Phys. Rev. A 101 032301

    [80]

    Sab´ln C, Garc´la-Alcaine G 2008 Eur. Phys. J. D 48 435

    [81]

    Guo Y, Gour G 2019 Phys. Rev. A 101 032301

    [82]

    Naikoo J, Kumar Alok A, Banerjee S, Uma Sankar S 2019 Phys. Rev. D 99 095001

    [83]

    Abe K, Abgrall N, Aihara H 2011 Nucl. Instrum. Methods Phys. Res., Sect. A 659 10630

    [84]

    Patterson R B 2013 Nucl. Phys. B, Proc. Suppl. 235õ236 151

    [85]

    Abi B, Acciarri R, Acero M A 2020 Eur. Phys. J. C 80 978

    [86]

    Formaggio J A, Kaiser D I, Murskyj M M, Weiss T E 2016 Phys. Rev. Lett. 117 050402

    [87]

    Naikoo J, Kumar Alok A, Banerjee S, Uma Sankar S, Guarnieri G, Schultze C, Hiesmayr B C 2020 Nucl. Phys. B 951 114872

    [88]

    Gangopadhyaya D, Sinha Royb A 2017 Eur. Phys. J. C 77 260

    [89]

    Mermin N D 1990 Phys. Rev. Lett. 65 1838

    [90]

    Svetlichny G 1987 Phys. Rev. D 35 3066

    [91]

    Alsina D, Latorre J I 2016 Phys. Rev. A 94 012314

    [92]

    Bancal J D, Brunner N, Gisin N 2011 Phys. Rev. Lett. 106 020405

    [93]

    Renes J, Boileau J C 2009 Phys. Rev. Lett. 103 020402

    [94]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [95]

    Ollivier H, Zurek W H 2001 Phys. Rev. Lett. 88 017901

    [96]

    Dakic B, Vedral V, Brukner C 2010 Phys. Rev. Lett. 105 190502

    [97]

    Bai Y K, Xu Y F, Wang Z D 2014 Phys. Rev. Lett. 113 100503

    [98]

    Streltsov A, Adesso G, Piani M, Bruss D 2012 Phys. Rev. Lett. 109 050503

    [99]

    Jakob M, Bergou J A 2007 Phys. Rev. A 76 052107

    [100]

    Dixit K, Naikoo J, Mukhopadhyay B, Banerjee S 2019 Phys. Rev. D 100 055021

    [101]

    Yadav B, Sarkar T, Dixit K, Alok A K 2022 Eur. Phys. J. C 82 446

    [102]

    Bittencourt V A S V, Bernardini A E, Blasone M 2021 Eur. Phys. J. C 81 411

    [103]

    Blasone M, Illuminati F, Petruzziello L, Smaldone L 2023 Phys. Rev. A 108 032210

  • [1] 赖红, 任黎, 黄钟锐, 万林春. 基于多尺度纠缠重整化假设的量子网络通信资源优化方案.  , doi: 10.7498/aps.73.20241382
    [2] 余敏, 郭有能. 关联退相位有色噪声通道下熵不确定关系的调控.  , doi: 10.7498/aps.73.20241171
    [3] 胡飞飞, 李思莹, 朱顺, 黄昱, 林旭斌, 张思拓, 范云茹, 周强, 刘云. 用于量子纠缠密钥的多波长量子关联光子对的产生.  , doi: 10.7498/aps.73.20241274
    [4] 王东升. 通用量子计算模型: 一个资源理论的视角.  , doi: 10.7498/aps.73.20240893
    [5] 朱佳莉, 曹原, 张春辉, 王琴. 实用化量子密钥分发光网络中的资源优化配置.  , doi: 10.7498/aps.72.20221661
    [6] 许霄琰. 强关联电子体系的量子蒙特卡罗计算.  , doi: 10.7498/aps.71.20220079
    [7] 陈以鹏, 刘靖阳, 朱佳莉, 方伟, 王琴. 机器学习在量子通信资源优化配置中的应用.  , doi: 10.7498/aps.71.20220871
    [8] 李丽娟, 明飞, 宋学科, 叶柳, 王栋. 熵不确定度关系综述.  , doi: 10.7498/aps.71.20212197
    [9] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展.  , doi: 10.7498/aps.70.20210923
    [10] 冯啸天, 袁春华, 陈丽清, 陈洁菲, 张可烨, 张卫平. 光和原子关联与量子计量.  , doi: 10.7498/aps.67.20180895
    [11] 杨阳, 王安民, 曹连振, 赵加强, 逯怀新. 与XY双自旋链耦合的双量子比特系统的关联性与相干性.  , doi: 10.7498/aps.67.20180812
    [12] 秦猛, 李延标, 白忠. 非均匀磁场和杂质磁场对自旋1系统量子关联的影响.  , doi: 10.7498/aps.64.030301
    [13] 李艳杰, 刘金明. 极性分子摆动态的三体量子关联.  , doi: 10.7498/aps.63.200302
    [14] 谢美秋, 郭斌. 不同磁场环境下Heisenberg XXZ自旋链中的热量子失协.  , doi: 10.7498/aps.62.110303
    [15] 樊开明, 张国锋. 阻尼Jaynes-Cummings模型中两原子的量子关联动力学.  , doi: 10.7498/aps.62.130301
    [16] 杨阳, 王安民. 与Ising链耦合的中心双量子比特系统的量子关联.  , doi: 10.7498/aps.62.130305
    [17] 曹广涛, 王永久. Kasner 时空中的中微子振荡相位.  , doi: 10.7498/aps.59.5921
    [18] 宋建军, 李希国. 量子能谱中的长程关联.  , doi: 10.7498/aps.50.1661
    [19] 汪鸿伟. 量子阱中的电子关联.  , doi: 10.7498/aps.46.1618
    [20] 邓稼先, 何作庥. β-中微子角关联,β-r角关联和β-能谱因子.  , doi: 10.7498/aps.12.96
计量
  • 文章访问数:  112
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-25

/

返回文章
返回
Baidu
map