搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究

尹俊豪 杨涛 印建平

引用本文:
Citation:

基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究

尹俊豪, 杨涛, 印建平

Theoretical investigation into spectrum of ${{{\bf{A}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Pi}} }_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow}} {{{\bf{X}}}}^{{\boldsymbol{2}}}{{\boldsymbol{\Sigma}} }_{{\boldsymbol{1/2}}}$ transition for CaH molecule toward laser cooling

Yin Jun-Hao, Yang Tao, Yin Jian-Ping
PDF
HTML
导出引用
  • 冷分子是当下物理学的前沿领域和热点研究方向之一, 早在2004年就有科学家提出将CaH分子作为激光冷却与磁光囚禁的候选分子. 本文首先用三种方法(莫尔斯势法、闭合近似法和RKR反演法)计算CaH分子的弗兰克-康登因子, 证实了CaH的$ {\mathrm{X}}^{2}\Sigma _{1/2} $态和$ {\mathrm{A}}^{2}\Pi _{1/2} $态之间具有高度对角化的弗兰克-康登因子矩阵. 随后, 采用有效哈密顿量的方法研究了基态$ {\mathrm{X}}^{2}\Sigma _{1/2} $的超精细能级结构和$ {\mathrm{A}}^{2}\Pi _{1/2}\left(J=1/2, \mathrm{ }+\right)\leftarrow {\mathrm{X}}^{2}\Sigma _{1/2}\left(N=1, \mathrm{ }-\right) $跃迁的超精细跃迁分支比, 并提出可同时覆盖超精细能级的边带调制方案. 最后, 为探究CaH分子磁光囚禁的相关性质, 计算了$ |X, \mathrm{ }N=1, -\rangle $态的塞曼效应和 J 混合下的朗德 g 因子. 以上工作不仅证明了激光冷却和磁光囚禁CaH分子的可行性, 而且对天体物理学中的光谱分析、超冷分子碰撞以及探索基本对称性破缺等基础物理学的相关研究也具有一定的参考意义.
    Laser cooling and trapping of neutral molecules has made substantial progress in the past few years. On one hand, molecules have more complex energy level structures than atoms, thus bringing great challenges to direct laser cooling and trapping; on the other hand, cold molecules show great advantages in cold molecular collisions and cold chemistry, as well as the applications in many-body interactions and fundamental physics such as searching for fundamental symmetry violations. In recent years, polar diatomic molecules such as SrF, YO, and CaF have been demonstrated experimentally in direct laser cooling techniques and magneto-optic traps (MOTs), all of which require a comprehensive understanding of their molecular internal level structures. Other suitable candidates have also been proposed, such as YbF, MgF, BaF, HgF or even SrOH and YbOH, some of which are already found to play important roles in searching for variations of fundamental constants and the measurement of the electron’s Electric Dipole Moment (eEDM). As early as 2004, the CaH molecule was selected as a good candidate for laser cooling and magneto-optical trapping. In this article, we first theoretically investigate the Franck−Condon factors of CaH in the ${{\rm{A}}}^{2}\Pi _{1/2}\leftarrow {{\rm{X}}}^{2}\Sigma _{1/2}$ transition by the Morse potential method, the closed-form approximation method and the Rydberg-Klein-Rees method separately, and prove that Franck−Condon factor matrix between $ {\mathrm{X}}^{2}\Sigma _{1/2} $ state and $ {\mathrm{A}}^{2}\Pi _{1/2} $state is highly diagonalized, and indicate that sum of f00, f01 and f02 for each molecule is greater than 0.9999 and almost 1 × 104 photons can be scattered to slow the molecules with merely three lasers. The molecular hyperfine structures of $ {X}^{2}\Sigma _{1/2} $, as well as the transitions and associated hyperfine branching ratios in the ${{\rm{A}}}^{2}\Pi _{1/2}\left(J=1/2, \mathrm{ }+\right)\leftarrow {{\rm{X}}}^{2}\Sigma _{1/2}\left(N=1, \mathrm{ }-\right)$ transition of CaH, are examined via the effective Hamiltonian approach. According to these results, in order to fully cover the hyperfine manifold originating from $ |X, \mathrm{ }N=1, -\rangle $, we propose the sideband modulation scheme that at least two electro-optic modulators (EOMs) should be required for CaH when detuning within 3Γ of the respective hyperfine transition. In the end, we analyze the Zeeman structures and magnetic g factors with and without J mixing of the $ |X, \mathrm{ }N=1, -\rangle $ state to undercover more information about the magneto-optical trapping. Our work here not only demonstrates the feasibility of laser cooling and trapping of CaH, but also illuminates the studies related to spectral analysis in astrophysics, ultracold molecular collisions and fundamental physics such as exploring the fundamental symmetry violations.
      通信作者: 杨涛, tyang@lps.ecnu.edu.cn ; 印建平, jpyin@phy.ecnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11834003, 11874151)资助的课题
      Corresponding author: Yang Tao, tyang@lps.ecnu.edu.cn ; Yin Jian-Ping, jpyin@phy.ecnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11834003, 11874151)
    [1]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photonics 11 48

    [2]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [3]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896Google Scholar

    [4]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [5]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [6]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [7]

    Hadzibabic Z, Krüger P, Cheneau M, Battelier B, Dalibard J 2006 Nature 441 1118Google Scholar

    [8]

    Müller H, Peters A, Chu S 2010 Nature 463 926Google Scholar

    [9]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [10]

    Bouchendira R, Cladé P, Guellati-Khélifa S, Nez F, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [11]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [12]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [13]

    Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Müller H 2017 Nat. Phys. 13 938Google Scholar

    [14]

    Asenbaum P, Overstreet C, Kovachy T, Brown D D, Hogan J M, Kasevich M A 2017 Phys. Rev. Lett. 118 183602Google Scholar

    [15]

    Omran A, Levine H, Keesling A, Semeghini G, Wang T T, Ebadi S, Bernien H, Zibrov A S, Pichler H, Choi S, Cui J, Rossignolo M, Rembold P, Montangero S, Calarco T, Endres M, Greiner M, Vuletić V, Lukin M D 2019 Science 365 570Google Scholar

    [16]

    Friis N, Marty O, Maier C, Hempel C, Holzäpfel M, Jurcevic P, Plenio M B, Huber M, Roos C, Blatt R, Lanyon B 2018 Phys. Rev. X 8 021012

    [17]

    Chin C, Flambaum V V, Kozlov M G 2009 New J. Phys. 11

    [18]

    DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100 023003Google Scholar

    [19]

    Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D 2014 Science 343 269Google Scholar

    [20]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar

    [21]

    Bohn J L, Rey A M, Ye J 2017 Science 357 1002Google Scholar

    [22]

    Baranov M A, Dalmonte M, Pupillo G, Zoller P 2012 Chem. Rev. 112 5012Google Scholar

    [23]

    Kotochigova S, Zelevinsky T, Ye J 2009 Phys. Rev. A 79 012504Google Scholar

    [24]

    Murphy T M, Flambaum V V, Muller S, Henkel C 2008 Science 320 1611Google Scholar

    [25]

    Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100 043201Google Scholar

    [26]

    Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar

    [27]

    Di Rosa M D 2004 Eur. Phys. J. D 31 395Google Scholar

    [28]

    Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 1

    [29]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [30]

    Barry J F, Shuman E S, Norrgard E B, DeMille D 2012 Phys. Rev. Lett. 108 103002Google Scholar

    [31]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [32]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [33]

    Hemmerling B, Chae E, Ravi A, Anderegg L, Drayna G K, Hutzler N R, Collopy A L, Ye J, Ketterle W, Doyle J M 2016 J. Phys. B 49 174001Google Scholar

    [34]

    Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A 2017 New J. Phys. 19 1

    [35]

    Iwata G Z, McNally R L, Zelevinsky T 2017 Phys. Rev. A 96 022509Google Scholar

    [36]

    Bu W, Chen T, Lv G, Yan B 2017 Phys. Rev. A 95 1

    [37]

    Lim J, Almond J R, Trigatzis M A, Devlin J A, Fitch N J, Sauer B E, Tarbutt R M, Hinds E A 2018 Phys. Rev. Lett. 120 123201Google Scholar

    [38]

    Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar

    [39]

    Burgasser A J, Kirkpatrick J D, Liebert J, Burrows A 2003 Astrophys. J. 594 510Google Scholar

    [40]

    Yadin B, Veness T, Conti P, Hill C, Yurchenko S N, Tennyson J 2012 Mon. Not. R. Astron. Soc. 425 34Google Scholar

    [41]

    Sotirowski P 1972 Astron. Astrophys. Suppl. Ser. 6 85

    [42]

    Woolf V M, Wallerstein G, Month N R 2004 Astron. Soc. 350 1365

    [43]

    Shkolnik E, Liu M C, Reid I N 2009 Astrophys. J. 699 649Google Scholar

    [44]

    Habli H, Jellali S, Oujia B 2020 Phys. Scr. 95 015403Google Scholar

    [45]

    Fazil N M, Prasannaa V S, Latha K V P, Abe M, Das B P 2018 Phys. Rev. A 98 032511Google Scholar

    [46]

    Shayesteh A, Ram R S, Bernath P F 2013 J. Mol. Spectrosc. 288 46Google Scholar

    [47]

    GharibNezhad E, Shayesteh A, Bernath P F 2012 J. Mol. Spectrosc. 281 47Google Scholar

    [48]

    Li G, Harrison J J, Ram R S, Western C M, Bernath P F 2012 J Quant. Spectrosc. Radiat. Transfer 113 67Google Scholar

    [49]

    Liu M, Pauchard T, Sjödin M, Launila O, van der Meulen P, Berg L E 2009 J. Mol. Spectrosc. 257 105Google Scholar

    [50]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [51]

    Nicholls R W 1981 J. Suppl. Ser. 47 279Google Scholar

    [52]

    Frank A, Rivera A L, Wolf K B 2000 Phys. Rev. A 61 054102Google Scholar

    [53]

    Rees A L G 1947 Proc. Phys. Soc. 59 998Google Scholar

    [54]

    Roy R J L 2007 LEVEL8.0: A Compute Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) No. CP-663 [Chemical Physics Research Report]

    [55]

    Berg L E, Klynning L 1974 Phys. Scr. 10 331Google Scholar

    [56]

    Knight L B, Weltner W 1971 J. Chem. Phys. 54 3875Google Scholar

    [57]

    Frosch R A, Foley H M 1952 Phys. Rev. 88 1337Google Scholar

    [58]

    Zare R N 1988 Angular Momentum (New York: A Wiley-Interscience Publication) pp186–191

    [59]

    Barclay W L, J r., Anderson M A, Ziurys L M 1993 Astrophys. J. 408 L65Google Scholar

    [60]

    Sauer B E, Wang J, Hinds E A 1996 J. Chem. Phys. 105 7412Google Scholar

    [61]

    Brown J H, Carrington A 2012 Rotational Spectroscopy of Diatomic Molecules (Cambridge: Cambridge University Press) pp230–251

    [62]

    Chen T, Bu W, Yan B 2016 Phys. Rev. A 94 063415Google Scholar

    [63]

    Xu L, Yin Y N, Wei B, Xia Y, Yin J P 2016 Phys. Rev. A 93 013408Google Scholar

  • 图 1  CaH分子高度对角化的F-C因子矩阵

    Fig. 1.  Highly diagonalized F-C factor matrix of CaH.

    图 2  CaH分子准封闭跃迁循环的激光冷却方案. 其中的蓝线表示泵浦激光, $ {\lambda }_{\upsilon {\upsilon }'} $表示泵浦激光的跃迁波长, 绿色虚线表示从$ {\mathrm{A}}^{2}\Pi _{1/2} $态自发辐射的衰变率, 即F-C因子$ {f}_{{\upsilon }'\upsilon } $

    Fig. 2.  Proposed scheme to create a quasi-closed cycling transition for laser cooling of CaH. Blue solid lines indicate the laser-driven transitions at the wavelengths $ {\lambda }_{\upsilon {\upsilon }'} $, while green dotted lines indicate the spontaneous decays from the $ {\mathrm{A}}^{2}\Pi _{1/2} $ state along with the corresponding F-C factors $ {f}_{{\upsilon }'\upsilon } $.

    图 3  CaH转动能级和超精细能级的能级分裂以及准封闭的跃迁循环. 根据选择定则, 由$|A, {\upsilon }'=0, {J}'=1/2, +\rangle \leftarrow$$ |X, \upsilon =0, N=1, \mathrm{ }-\rangle $跃迁(绿色实线)被泵浦到上能级的分子将会自发辐射回N = 1的基态

    Fig. 3.  Energy splitting between different rotational hyperfine levels and the closure of the rotational structures for CaH. Due to selection rules, driving the $|A, {\upsilon }'=0, {J}'= $$ 1/2, +\rangle \leftarrow |X, \upsilon =0, N=1, \mathrm{ }-\rangle$ transition (green solid upward lines) will allow a spontaneous decay (green dotted downward line) that goes back to N = 1 state.

    图 4  能同时覆盖CaH分子$ |X, \mathrm{ }N=1, -\rangle $态下四个子能级的边带调制方案. 中间的黑色实线表示基频光; 蓝色实线表示超精细能级的中心频率; 黑色虚线与红色实线分别表示两个EOM的边带, 调制频率分别为fmod1 = 994.25 MHz 和 fmod2 = 941.25 MHz. 每个边带的失谐量均控制在3Γ

    Fig. 4.  Proposed sideband modulation scheme to simultaneously cover all hyperfine transitions originating from the $ |X, \mathrm{ }N=1, -\rangle $ state of CaH. The black solid line in the middle indicates the fundamental laser frequency, while the blue solid line corresponds to the central frequency of the hyperfine transitions. The black dash line and the red solid line represent the sidebands of two EOMs respectively with the modulating frequencies fmod1 = 994.25 MHz and fmod2 = 941.25 MHz. All the hyperfine levels are well addressed for detuning within 3Γ of the respective hyperfine transition.

    图 5  CaH在$ |X, \mathrm{ }N=1, -\rangle $态的塞曼能移. 红线和蓝线分别表示$ \left|J=3/2, \right.F=2\rangle $态和$ \left|J=3/2, \right.F=1\rangle $态, 黑线代表了$ \left|J=1/2, \right.F=0\rangle $态和$ \left|J=1/2, \right.F=1\rangle $

    Fig. 5.  Zeeman structures for the $ |X, \mathrm{ }N=1, -\rangle $ state of CaH. The red and blue lines indicate the energy levels for $ \left|J=3/2, \right.F=2\rangle $ and $ \left|J=3/2, \right.F=1\rangle $ states, while the black lines represent the energy levels for $ \left|J=1/2, \right.F=0\rangle $ and $ \left|J=1/2, \right.F=1\rangle $ states, respectively.

    表 1  CaH分子相关电子态光谱学参数

    Table 1.  Parameters for involved electronic states of CaH.

    $ {T}_{\mathrm{e}} $/cm–1$ {\omega }_{\mathrm{e}} $/cm–1$ {\omega }_{\mathrm{e}}{\chi }_{\mathrm{e}} $/cm–1$ {r}_{\mathrm{e}} $/Åτ/ns
    $ {\mathrm{X}}^{2}\Sigma _{1/2} $01298.34 a19.1 a2.0025 b
    $ {\mathrm{A}}^{2}\Pi _{1/2} $14413.0 a1333 a20 a1.9740 b33.2 c
    aRef. [55]; bRef. [56]; cRef. [49].
    下载: 导出CSV

    表 2  用三种方法(闭合近似法、莫尔斯势法和RKR反演法)计算的CaH分子的部分F-C因子

    Table 2.  Calculated Franck-Condon factors of CaH by the closed-form approximation method, the Morse potential method and the RKR inversion method.

    方法f00f01f02f11f13
    闭合近似0.98460.01520.00010.95450.00035
    莫尔斯势0.98500.01460.00040.95600.0014
    RKR反演0.995420.004540.000040.986310.00012
    Ref. [50]0.9610.0380.0020.8850.005
    下载: 导出CSV

    表 3  CaH分子$ {\mathrm{X}}^{2}\Sigma _{1/2} $态和$ {\mathrm{A}}^{2}\Pi _{1/2} $间跃迁波长的计算值和实验值, 括号内的数值代表最后位的不确定度(标准偏差)

    Table 3.  Comparison between the calculated and experimental results of the transition wavelengths between $ {\mathrm{X}}^{2}\Sigma _{1/2} $ and $ {\mathrm{A}}^{2}\Pi _{1/2} $ states of CaH. Numbers in parentheses indicate the uncertainty (standard deviation) in the last figures.

    跃迁波长/nm本文实验值[55]Ref. [50]
    λ00692.996 (4)693.0675.4
    λ10759.303 (8)759.3738.0
    λ21755.229 (20)732.0
    下载: 导出CSV

    表 4  CaH分子$ {\mathrm{X}}^{2}\Sigma _{1/2} $态的转动常数和超精细结构常数

    Table 4.  Rotational and hyperfine structure parameters for the $ {\mathrm{X}}^{2}\Sigma _{1/2} $state of CaH.

    参数Ref. [59]
    $ {B}_{\upsilon } $/MHz126772.935
    $ {D}_{\upsilon } $/MHz5.546
    $ {\gamma_\upsilon } $/MHz1305.755
    $ {b}_{\upsilon } $/MHz155.785
    $ {c}_{\upsilon } $/MHz4.74
    下载: 导出CSV

    表 5  CaH分子$ {\mathrm{A}}^{2}\Pi _{1/2}\leftarrow {\mathrm{X}}^{2}\Sigma _{1/2} $的超精细跃迁频率(ΔJ = 0和1, ΔF = ± 1和0).

    Table 5.  Calculated frequencies for hyperfine transitions $ {\mathrm{A}}^{2}\Pi _{1/2}\leftarrow {\mathrm{X}}^{2}\Sigma _{1/2} $J = 0 and 1, ΔF = ± 1 and 0) for CaH.

    $ N\to N' $$J \to J'$$F \to F' $νcal/MHzνexpa/MHzνcalνexp/MHz
    0$ \to $11/2$ \to $1/21$ \to $1252163.0907252163.0820.0087
    1$ \to $0252216.3510252216.3470.004
    0$ \to $1252320.4557252320.467–0.0113
    1/2$ \to $3/21$ \to $1254074.8288254074.834–0.0052
    1$ \to $2254176.4055254176.415–0.0095
    0$ \to $1254232.1938254232.1790.0148
    aRef. [59]
    下载: 导出CSV

    表 6  CaH分子$ |X, \upsilon =0, \mathrm{ }N=1, \mathrm{ }-\rangle $态理想的组分和考虑J混合的组分

    Table 6.  Nominal labels and actual labels due to J mixing for the $ |X, N=1, -\rangle $state of CaH molecules.

    理想的组分考虑 J 混合后真实的组分
    $ \left|J=3/2, \right.F=2\rangle $$ \left|J=3/2, \right.F=2\rangle $
    $ \left|J=3/2, \right.F=1\rangle $$0.999238\left|J=3/2, \right.F=1\rangle +\\0.039028\left|J=1/2, \right.F=1\rangle$
    $ \left|J=1/2, \right.F=1\rangle $$-0.039028\left|J=3/2, \right.F=1\rangle +\\0.999238\left|J=1/2, \right.F=1\rangle$
    $ \left|J=1/2, \right.F=0\rangle $$ \left|J=1/2, \right.F=0\rangle $
    下载: 导出CSV

    表 7  CaH分子$ |A, \mathrm{ }J'=1/2, +\rangle $态跃迁到$|X, \mathrm{ }N= $$ 1, -\rangle$态的超精细跃迁分支比

    Table 7.  Calculated hyperfine branching ratios for decays from $ |A, \mathrm{ }J'=1/2, +\rangle $ to $ |X, \mathrm{ }N=1, -\rangle $ for CaH molecules.

    JFMFF' = 0F' = 1
    $M'_{\rm F} = 0$$M'_{\rm F} = -1$$M'_{\rm F} = 0$$M'_{\rm F} = 1$
    3/2–20.0000000.1666670.0000000.000000
    –10.0000000.0833330.0833330.000000
    00.0000000.0277780.1111110.027778
    10.0000000.0000000.0833330.083333
    20.0000000.0000000.0000000.166667
    3/2–10.0990240.0342020.0342020.000000
    00.0990240.0342020.0000000.034202
    10.0990240.0000000.0342020.034202
    1/2–10.2343090.2157980.2157980.000000
    00.2343090.2157980.0000000.215798
    10.2343090.0000000.2157980.215798
    1/200.0000000.2222220.2222220.222222
    下载: 导出CSV

    表 8  CaH分子$ {\mathrm{X}}^{2}\Sigma _{1/2} $ ($ \upsilon =0, N=1 $)态的朗德g因子

    Table 8.  The g factors for the $ {\mathrm{X}}^{2}\Sigma _{1/2} $ ($\upsilon =0, $$ N=1$) state of CaH molecules.

    g (没有J 混合)g (有J 混合)
    $ \left|J=3/2, \right.F=2\rangle $0.500.50
    $ \left|J=3/2, \right.F=1\rangle $0.830.865
    $ \left|J=1/2, \right.F=1\rangle $–0.33–0.365
    $ \left|J=1/2, \right.F=0\rangle $0.000.000
    下载: 导出CSV
    Baidu
  • [1]

    Schioppo M, Brown R C, McGrew W F, Hinkley N, Fasano R J, Beloy K, Yoon T H, Milani G, Nicolodi D, Sherman J A, Phillips N B, Oates C W, Ludlow A D 2016 Nat. Photonics 11 48

    [2]

    Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B, Leibrandt D R 2019 Phys. Rev. Lett. 123 033201Google Scholar

    [3]

    Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L, Ye J 2015 Nat. Commun. 6 6896Google Scholar

    [4]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [5]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [6]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [7]

    Hadzibabic Z, Krüger P, Cheneau M, Battelier B, Dalibard J 2006 Nature 441 1118Google Scholar

    [8]

    Müller H, Peters A, Chu S 2010 Nature 463 926Google Scholar

    [9]

    Huntemann N, Lipphardt B, Tamm C, Gerginov V, Weyers S, Peik E 2014 Phys. Rev. Lett. 113 210802Google Scholar

    [10]

    Bouchendira R, Cladé P, Guellati-Khélifa S, Nez F, Biraben F 2011 Phys. Rev. Lett. 106 080801Google Scholar

    [11]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [12]

    Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K, Gill P 2014 Phys. Rev. Lett. 113 210801Google Scholar

    [13]

    Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Müller H 2017 Nat. Phys. 13 938Google Scholar

    [14]

    Asenbaum P, Overstreet C, Kovachy T, Brown D D, Hogan J M, Kasevich M A 2017 Phys. Rev. Lett. 118 183602Google Scholar

    [15]

    Omran A, Levine H, Keesling A, Semeghini G, Wang T T, Ebadi S, Bernien H, Zibrov A S, Pichler H, Choi S, Cui J, Rossignolo M, Rembold P, Montangero S, Calarco T, Endres M, Greiner M, Vuletić V, Lukin M D 2019 Science 365 570Google Scholar

    [16]

    Friis N, Marty O, Maier C, Hempel C, Holzäpfel M, Jurcevic P, Plenio M B, Huber M, Roos C, Blatt R, Lanyon B 2018 Phys. Rev. X 8 021012

    [17]

    Chin C, Flambaum V V, Kozlov M G 2009 New J. Phys. 11

    [18]

    DeMille D, Cahn S B, Murphree D, Rahmlow D A, Kozlov M G 2008 Phys. Rev. Lett. 100 023003Google Scholar

    [19]

    Baron J, Campbell W C, DeMille D, Doyle J M, Gabrielse G, Gurevich Y V, Hess P W, Hutzler N R, Kirilov E, Kozyryev I, O’Leary B R, Panda C D, Parsons M F, Petrik E S, Spaun B, Vutha A C, West A D 2014 Science 343 269Google Scholar

    [20]

    Hudson J J, Sauer B E, Tarbutt M R, Hinds E A 2002 Phys. Rev. Lett. 89 023003Google Scholar

    [21]

    Bohn J L, Rey A M, Ye J 2017 Science 357 1002Google Scholar

    [22]

    Baranov M A, Dalmonte M, Pupillo G, Zoller P 2012 Chem. Rev. 112 5012Google Scholar

    [23]

    Kotochigova S, Zelevinsky T, Ye J 2009 Phys. Rev. A 79 012504Google Scholar

    [24]

    Murphy T M, Flambaum V V, Muller S, Henkel C 2008 Science 320 1611Google Scholar

    [25]

    Zelevinsky T, Kotochigova S, Ye J 2008 Phys. Rev. Lett. 100 043201Google Scholar

    [26]

    Cairncross W B, Gresh D N, Grau M, Cossel K C, Roussy T S, Ni Y, Zhou Y, Ye J, Cornell E A 2017 Phys. Rev. Lett. 119 153001Google Scholar

    [27]

    Di Rosa M D 2004 Eur. Phys. J. D 31 395Google Scholar

    [28]

    Shuman E S, Barry J F, Glenn D R, DeMille D 2009 Phys. Rev. Lett. 103 1

    [29]

    Shuman E S, Barry J F, DeMille D 2010 Nature 467 820Google Scholar

    [30]

    Barry J F, Shuman E S, Norrgard E B, DeMille D 2012 Phys. Rev. Lett. 108 103002Google Scholar

    [31]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [32]

    Zhelyazkova V, Cournol A, Wall T E, Matsushima A, Hudson J J, Hinds E A, Tarbutt M R, Sauer B E 2014 Phys. Rev. A 89 053416Google Scholar

    [33]

    Hemmerling B, Chae E, Ravi A, Anderegg L, Drayna G K, Hutzler N R, Collopy A L, Ye J, Ketterle W, Doyle J M 2016 J. Phys. B 49 174001Google Scholar

    [34]

    Truppe S, Williams H J, Fitch N J, Hambach M, Wall T E, Hinds E A 2017 New J. Phys. 19 1

    [35]

    Iwata G Z, McNally R L, Zelevinsky T 2017 Phys. Rev. A 96 022509Google Scholar

    [36]

    Bu W, Chen T, Lv G, Yan B 2017 Phys. Rev. A 95 1

    [37]

    Lim J, Almond J R, Trigatzis M A, Devlin J A, Fitch N J, Sauer B E, Tarbutt R M, Hinds E A 2018 Phys. Rev. Lett. 120 123201Google Scholar

    [38]

    Kozyryev I, Baum L, Matsuda K, Augenbraun B L, Anderegg L, Sedlack A P, Doyle J M 2017 Phys. Rev. Lett. 118 173201Google Scholar

    [39]

    Burgasser A J, Kirkpatrick J D, Liebert J, Burrows A 2003 Astrophys. J. 594 510Google Scholar

    [40]

    Yadin B, Veness T, Conti P, Hill C, Yurchenko S N, Tennyson J 2012 Mon. Not. R. Astron. Soc. 425 34Google Scholar

    [41]

    Sotirowski P 1972 Astron. Astrophys. Suppl. Ser. 6 85

    [42]

    Woolf V M, Wallerstein G, Month N R 2004 Astron. Soc. 350 1365

    [43]

    Shkolnik E, Liu M C, Reid I N 2009 Astrophys. J. 699 649Google Scholar

    [44]

    Habli H, Jellali S, Oujia B 2020 Phys. Scr. 95 015403Google Scholar

    [45]

    Fazil N M, Prasannaa V S, Latha K V P, Abe M, Das B P 2018 Phys. Rev. A 98 032511Google Scholar

    [46]

    Shayesteh A, Ram R S, Bernath P F 2013 J. Mol. Spectrosc. 288 46Google Scholar

    [47]

    GharibNezhad E, Shayesteh A, Bernath P F 2012 J. Mol. Spectrosc. 281 47Google Scholar

    [48]

    Li G, Harrison J J, Ram R S, Western C M, Bernath P F 2012 J Quant. Spectrosc. Radiat. Transfer 113 67Google Scholar

    [49]

    Liu M, Pauchard T, Sjödin M, Launila O, van der Meulen P, Berg L E 2009 J. Mol. Spectrosc. 257 105Google Scholar

    [50]

    Gao Y, Gao T 2014 Phys. Rev. A 90 052506Google Scholar

    [51]

    Nicholls R W 1981 J. Suppl. Ser. 47 279Google Scholar

    [52]

    Frank A, Rivera A L, Wolf K B 2000 Phys. Rev. A 61 054102Google Scholar

    [53]

    Rees A L G 1947 Proc. Phys. Soc. 59 998Google Scholar

    [54]

    Roy R J L 2007 LEVEL8.0: A Compute Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels (Waterloo: University of Waterloo) No. CP-663 [Chemical Physics Research Report]

    [55]

    Berg L E, Klynning L 1974 Phys. Scr. 10 331Google Scholar

    [56]

    Knight L B, Weltner W 1971 J. Chem. Phys. 54 3875Google Scholar

    [57]

    Frosch R A, Foley H M 1952 Phys. Rev. 88 1337Google Scholar

    [58]

    Zare R N 1988 Angular Momentum (New York: A Wiley-Interscience Publication) pp186–191

    [59]

    Barclay W L, J r., Anderson M A, Ziurys L M 1993 Astrophys. J. 408 L65Google Scholar

    [60]

    Sauer B E, Wang J, Hinds E A 1996 J. Chem. Phys. 105 7412Google Scholar

    [61]

    Brown J H, Carrington A 2012 Rotational Spectroscopy of Diatomic Molecules (Cambridge: Cambridge University Press) pp230–251

    [62]

    Chen T, Bu W, Yan B 2016 Phys. Rev. A 94 063415Google Scholar

    [63]

    Xu L, Yin Y N, Wei B, Xia Y, Yin J P 2016 Phys. Rev. A 93 013408Google Scholar

  • [1] 余泽鑫, 刘琪鑫, 孙剑芳, 徐震. 基于二维磁光阱的增强型199Hg冷原子团制备.  , 2024, 73(1): 013701. doi: 10.7498/aps.73.20231243
    [2] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究.  , 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析.  , 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [4] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质.  , 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [5] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质.  , 2022, 0(0): . doi: 10.7498/aps.7120221104
    [6] 王月洋, 尹俊豪, 严康, 林钦宁, 庞仁君, 王泽森, 杨涛, 印建平. 基于多能级速率方程的CaH分子三维磁光囚禁模型.  , 2022, 71(16): 163701. doi: 10.7498/aps.71.20220304
    [7] 万明杰, 李松, 金成国, 罗华锋. 激光冷却SH阴离子的理论研究.  , 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [8] 万明杰, 罗华锋, 袁娣, 李松. 激光冷却KCl阴离子的理论研究.  , 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [9] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术.  , 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [10] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究.  , 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [11] 李晓云, 孙博文, 许正倩, 陈静, 尹亚玲, 印建平. 基于调制光晶格的中性分子束光学Stark减速与囚禁的理论研究.  , 2018, 67(20): 203702. doi: 10.7498/aps.67.20181348
    [12] 许雪艳, 侯顺永, 印建平. 一种可控的Ioffe型冷分子表面微电阱.  , 2018, 67(11): 113701. doi: 10.7498/aps.67.20180206
    [13] 张云光, 张华, 窦戈, 徐建刚. 激光冷却OH分子的理论研究.  , 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [14] 刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲. 6Li32S双原子分子的光谱和辐射跃迁理论研究.  , 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [15] 刘建平, 侯顺永, 魏斌, 印建平. 亚声速NH3分子束静电Stark减速的理论研究.  , 2015, 64(17): 173701. doi: 10.7498/aps.64.173701
    [16] 许忻平, 张海潮, 王育竹. 一种实现冷原子束聚集的微磁透镜新方案.  , 2012, 61(22): 223701. doi: 10.7498/aps.61.223701
    [17] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱.  , 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [18] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真.  , 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [19] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用.  , 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [20] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获.  , 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
计量
  • 文章访问数:  4108
  • PDF下载量:  118
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-18
  • 修回日期:  2021-04-12
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-20

/

返回文章
返回
Baidu
map