搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种实现冷原子束聚集的微磁透镜新方案

许忻平 张海潮 王育竹

引用本文:
Citation:

一种实现冷原子束聚集的微磁透镜新方案

许忻平, 张海潮, 王育竹

A new mini-magnetic lens proposal for coverging the clod atoms

Xu Xin-Ping, Zhang Hai-Chao, Wang Yu-Zhu
PDF
导出引用
  • 本文报道了对87Rb冷原子云聚焦的微磁透镜实验. 磁透镜的核心部件是一个半径为2 mm的微型线圈. 当冷原子云沿线圈轴向运动到线圈附近时, 线圈产生的非均匀磁场会对原子云实现纵向压缩. 在线圈电流加载时间为10 ms的情况下, 原子云纵向尺寸随线圈电流增加先表现为会聚趋势;在某一电流值(0.9 A)之后, 表现为扩散趋势. 与不加载线圈电流的情形相比较, 电流为0.9 A时的冷原子云纵向尺寸缩小了一个多量级, 透镜焦距约为1.3 mm. 通过同时调节线圈电流的大小和作用时间, 可实现对透镜焦距的调节. 同时用数值模拟方法模拟了实验过程, 模拟结果与实验结果基本符合.
    A mini-magnetic lens for laser-cooled rubidium atoms is experimentally demonstrated in this paper. The key component of the mini-magnetic lens is a mini-coil with a radius of 2 mm. When the cold atomic clouds are transported in the vicinity of the coil along its axial, they are compressed in the longitudinal direction due to the interaction with the non-uniform magnetic field of the coil. Given a current carrying time of about 10 ms, the atomic clouds tend to be gradually compressed in the axial direction with the increase of the coil current. When the coil current is greater than 0.9 A, the atomic clouds begin to expand. At a threshold value of 0.9 A, the focus length of the mini-magnetic lens is determined to be about 1.3 mm. Compared with the case that no current passes through the mini-coil, the dimension of the focused atom clouds is one order of magnitude smaller. Moreover, the focus length can be controlled by both the coil current and its carrying time. Numerical simulations are also given which are in agreement with the experimental results.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2006CB921202)和国家自然科学基金(批准号: 10974210)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2006CB921202), and the National Natural Science Foundation of China (Grant No. 10974210).
    [1]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707

    [2]

    Xu Z, Zhou S Y, Qu Q Z, Liu H, Zhou S Y, Wang Y Z 2006 Acta Phys. Sin. 55 5643 ( in Chinese) [徐震, 周蜀渝, 屈求智, 刘华, 周善钰, 王育竹 2006 55 5643]

    [3]

    Adams C S, Sigel M, Mlynek J 1994 Phys. Rep. 240 143

    [4]

    Roach T M, Abele H, Boshier M G, Grossman H L, Hinds E A 1995 Phys. Rev. Lett. 75 629

    [5]

    Duan Z L, Zhang W P, Li S Q, Zhou Z Y, Feng Y Y, Zhu R 2005 Acta Phys. Sin. 54 5622 (in Chinese) [段正路, 张卫平, 李师群, 周兆英, 冯焱颖, 朱荣 2004 54 5622]

    [6]

    Berman P 1997 Atom Interferometry (San Diego: Academic Press)

    [7]

    Fortagh J, Zimmermann C 2007 Rev. Mod. Phys. 79 235

    [8]

    Folman R, Kruger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. At. Mol. Opt. Phys. 48 263

    [9]

    Liu Y, Yun M, Yin J P 2006 Chin. Phys. Lett. 23 1698

    [10]

    Mewes M O, Andrews M R, Kurn D M, Durfee D M, Durfee C G, Townsend C G, Ketterle W 1997 Phys. Rev. Lett. 78 582

    [11]

    Drodofsky U, Stuhler J, Brezger B, Schulze T, Drewsen M, Pfau T, Mlynek J 1997 Appl. Phys. B: Lasers Opt. 65 755

    [12]

    Meschede D, Metcalf H 2003 J. Phys. D: Appl. Phys. 36 R17

    [13]

    Bjorkholm E, Freeman R R, Ashkin A, Pearson D B 1978 Phys. Rev. Lett. 41 1361

    [14]

    Lu X D, Li T B, Ma Y, Wang L D 2009 Acta Phys. Sin. 58 8205 (in Chinese) [卢向东, 李同保, 马艳, 汪黎栋 2009 58 8205]

    [15]

    Meschede D, Mlynek J 2000 Appl. Phys. B 70 649

    [16]

    Kaenders W G, Lison F, Müller I, Richter A, Wynands R, Meschede D 1996 Phys. Rev. A 54 5067

    [17]

    Cornell E A, Monroe C, Wieman C E 1991 Phys. Rev. Lett. 67 2439

    [18]

    Miossec T, Barbé R, Keller J C, Gorceix O 2002 Opt. Commun. 209 349

    [19]

    Pritchard M J, Arnold A S, Smith D A, Hughes I G 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4435

    [20]

    Arnold A S, Pritchard M J, Smith D A, Hughes I G 2006 New J. Phys. 8 53

    [21]

    Bergeman T, Frez G, Metcalf H J 1987 Phys. Rev. A 35 1535

    [22]

    Chen D Y, Zhang H C, Xu X P, Li T, Wang Y Z 2010 Appl. Phys. Lett. 96 134103

    [23]

    Zhou S Y, Duan Z L, Qian J, Xu Z, Zhang W P, Wang Y Z 2009 Phys. Rev. A 80 033411

  • [1]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707

    [2]

    Xu Z, Zhou S Y, Qu Q Z, Liu H, Zhou S Y, Wang Y Z 2006 Acta Phys. Sin. 55 5643 ( in Chinese) [徐震, 周蜀渝, 屈求智, 刘华, 周善钰, 王育竹 2006 55 5643]

    [3]

    Adams C S, Sigel M, Mlynek J 1994 Phys. Rep. 240 143

    [4]

    Roach T M, Abele H, Boshier M G, Grossman H L, Hinds E A 1995 Phys. Rev. Lett. 75 629

    [5]

    Duan Z L, Zhang W P, Li S Q, Zhou Z Y, Feng Y Y, Zhu R 2005 Acta Phys. Sin. 54 5622 (in Chinese) [段正路, 张卫平, 李师群, 周兆英, 冯焱颖, 朱荣 2004 54 5622]

    [6]

    Berman P 1997 Atom Interferometry (San Diego: Academic Press)

    [7]

    Fortagh J, Zimmermann C 2007 Rev. Mod. Phys. 79 235

    [8]

    Folman R, Kruger P, Schmiedmayer J, Denschlag J, Henkel C 2002 Adv. At. Mol. Opt. Phys. 48 263

    [9]

    Liu Y, Yun M, Yin J P 2006 Chin. Phys. Lett. 23 1698

    [10]

    Mewes M O, Andrews M R, Kurn D M, Durfee D M, Durfee C G, Townsend C G, Ketterle W 1997 Phys. Rev. Lett. 78 582

    [11]

    Drodofsky U, Stuhler J, Brezger B, Schulze T, Drewsen M, Pfau T, Mlynek J 1997 Appl. Phys. B: Lasers Opt. 65 755

    [12]

    Meschede D, Metcalf H 2003 J. Phys. D: Appl. Phys. 36 R17

    [13]

    Bjorkholm E, Freeman R R, Ashkin A, Pearson D B 1978 Phys. Rev. Lett. 41 1361

    [14]

    Lu X D, Li T B, Ma Y, Wang L D 2009 Acta Phys. Sin. 58 8205 (in Chinese) [卢向东, 李同保, 马艳, 汪黎栋 2009 58 8205]

    [15]

    Meschede D, Mlynek J 2000 Appl. Phys. B 70 649

    [16]

    Kaenders W G, Lison F, Müller I, Richter A, Wynands R, Meschede D 1996 Phys. Rev. A 54 5067

    [17]

    Cornell E A, Monroe C, Wieman C E 1991 Phys. Rev. Lett. 67 2439

    [18]

    Miossec T, Barbé R, Keller J C, Gorceix O 2002 Opt. Commun. 209 349

    [19]

    Pritchard M J, Arnold A S, Smith D A, Hughes I G 2004 J. Phys. B: At. Mol. Opt. Phys. 37 4435

    [20]

    Arnold A S, Pritchard M J, Smith D A, Hughes I G 2006 New J. Phys. 8 53

    [21]

    Bergeman T, Frez G, Metcalf H J 1987 Phys. Rev. A 35 1535

    [22]

    Chen D Y, Zhang H C, Xu X P, Li T, Wang Y Z 2010 Appl. Phys. Lett. 96 134103

    [23]

    Zhou S Y, Duan Z L, Qian J, Xu Z, Zhang W P, Wang Y Z 2009 Phys. Rev. A 80 033411

  • [1] 余泽鑫, 刘琪鑫, 孙剑芳, 徐震. 基于二维磁光阱的增强型199Hg冷原子团制备.  , 2024, 73(1): 013701. doi: 10.7498/aps.73.20231243
    [2] 朱宇豪, 李瑞. 基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究.  , 2024, 73(5): 053101. doi: 10.7498/aps.73.20231347
    [3] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析.  , 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [4] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质.  , 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [5] 陈锋, 郝建红, 许海波. 考虑磁透镜边缘场的质子成像系统优化设计.  , 2021, 70(2): 022901. doi: 10.7498/aps.70.20201141
    [6] 万明杰, 柳福提, 黄多辉. 考虑自旋-轨道耦合效应下SeH阴离子的光谱和跃迁性质.  , 2021, 70(3): 033101. doi: 10.7498/aps.70.20201413
    [7] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质.  , 2021, (): . doi: 10.7498/aps.70.20211688
    [8] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究.  , 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [9] 李子亮, 师振莲, 王鹏军. 采用永磁铁的钠原子二维磁光阱的设计和研究.  , 2020, 69(12): 126701. doi: 10.7498/aps.69.20200266
    [10] 万明杰, 李松, 金成国, 罗华锋. 激光冷却SH阴离子的理论研究.  , 2019, 68(6): 063103. doi: 10.7498/aps.68.20182039
    [11] 万明杰, 罗华锋, 袁娣, 李松. 激光冷却KCl阴离子的理论研究.  , 2019, 68(17): 173102. doi: 10.7498/aps.68.20190869
    [12] 陈涛, 颜波. 极性分子的激光冷却及囚禁技术.  , 2019, 68(4): 043701. doi: 10.7498/aps.68.20181655
    [13] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究.  , 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [14] 张云光, 张华, 窦戈, 徐建刚. 激光冷却OH分子的理论研究.  , 2017, 66(23): 233101. doi: 10.7498/aps.66.233101
    [15] 苟维, 刘亢亢, 付小虎, 赵儒臣, 孙剑芳, 徐震. 中性汞原子磁光阱装载率的优化.  , 2016, 65(13): 130201. doi: 10.7498/aps.65.130201
    [16] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱.  , 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [17] 张宝武, 张萍萍, 马艳, 李同保. 铬原子束横向一维激光冷却的蒙特卡罗方法仿真.  , 2011, 60(11): 113701. doi: 10.7498/aps.60.113701
    [18] 张鹏飞, 许忻平, 张海潮, 周善钰, 王育竹. 紫外光诱导原子脱附技术在单腔磁阱装载中的应用.  , 2007, 56(6): 3205-3211. doi: 10.7498/aps.56.3205
    [19] 谢 旻, 凌 琳, 杨国建. 非简并Λ型三能级原子的速度选择相干布居俘获.  , 2005, 54(8): 3616-3621. doi: 10.7498/aps.54.3616
    [20] 西门纪业. 磁透镜与偏转器的复合系统的电子光学性质和象差理论.  , 1977, 26(1): 34-53. doi: 10.7498/aps.26.34
计量
  • 文章访问数:  8731
  • PDF下载量:  617
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-10-31
  • 修回日期:  2012-06-05
  • 刊出日期:  2012-11-05

/

返回文章
返回
Baidu
map