搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于介观元胞自动机的城市区域人员疏散模拟方法

吕伟 汪京辉 房志明 毛盾

引用本文:
Citation:

基于介观元胞自动机的城市区域人员疏散模拟方法

吕伟, 汪京辉, 房志明, 毛盾

Simulation method of urban evacuation based on mesoscopic cellular automata

Lü Wei, Wang Jing-Hui, Fang Zhi-Ming, Mao Dun
PDF
HTML
导出引用
  • 传统元胞自动机疏散模型中, 空间多划分为微观层面的精细网格, 难以对大范围的疏散场景进行模拟. 基于此, 本文结合行人流的运动特征, 建立了应用于大尺度人员疏散场景的人员疏散介观元胞自动机模型. 该模型以道路元胞划分替代平面网格元胞划分方式, 并引入“源加载”元胞加载模拟场景内疏散人员, 建立元胞间状态转移方程模拟疏散过程中的人员运动. 应用该模型, 对高校校园进行疏散子网划分, 模拟应急疏散过程并规划疏散路径, 既可以对场景内宏观疏散情况进行分析, 又可以观测单个元胞的状态变化. 基于模拟结果, 能够发现实际疏散过程中可能存在的问题, 提出相应的改进指引和意见.
    In the traditional cellular automata evacuation model, the space is divided into fine grids at a micro level, which is mainly used in a two-dimensional plane case. The evacuation space is mostly a small-scale architectural space or local area. Therefore, it is difficult to simulate a wide range of evacuation scenario, and there are less researches of the cellular automata model for a wide range of evacuation. Therefore, this article combines the movement characteristics and status of the pedestrian flow to establish a mesoscopic cellular automata model of evacuation applied to larger evacuation scenarios. This model uses road cell division instead of planar grid cell division, which augments the area of a single cell physically, increases the number of people occupied by a single cell, and expresses the number of people in each cell in the form of state variables. By changing personnel density and personnel speed, and by introducing “source loading” cell loading to simulate the evacuation of people in the scene, the behavior of pedestrians evacuating from the building to the road in the actual evacuation process can be simulated. The state transition equation simulates the movement of people in the evacuation process. When the number of people in the cell is larger, the density of people in the cell is higher, and their walking speed also decreases, which reflects the distribution and movement characteristics of pedestrian flow. This paper uses this model to divide the evacuation area of the college campus, and divides the entire campus into four evacuation areas. The evacuees in each area are evacuated corresponding to the corresponding exit, by planning the evacuation path, pedestrians walking from the “source loading” cell to the exit for evacuation. Through simulation, it is possible to analyze the macro-evacuation situation in the scene and observe the status change of a single cell. There are observed a high density of people in local road sections during campus evacuation, and the problem about the distribution of people on campus problems such as unevenness of pedestrian distribution and long evacuation schedules in certain places. Through the simulation of this model, possible problems in the actual evacuation process are found, and the improvement guidance and opinions are presented correspondingly.
      通信作者: 房志明, zhmfang2015@163.com
    • 基金项目: 国家自然科学基金(批准号: 52072286)、中国博士后科学基金(批准号: 2018M632937)和中央高校基本科研业务费专项资金(批准号: 2019IVA075, 2019III053GX)资助的课题
      Corresponding author: Fang Zhi-Ming, zhmfang2015@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52072286), the China Postdoctoral Science Foundation (Grant No. 2018M632937), and the Fundamental Research Funds for the Central Universities (Grant Nos. 2019IVA075, 2019III053GX)
    [1]

    Miyagawa D, Ichinose G 2020 Physica A 549 124376Google Scholar

    [2]

    Ji J W, Lu L G, Jin Z H, Wei S P, Ni L 2018 Physica A 509 1034Google Scholar

    [3]

    Maniccam S 2003 Physica A 321 653Google Scholar

    [4]

    Leng B, Wang J Y, Zhao W Y, Xiong Z 2014 Physica A 402 119Google Scholar

    [5]

    Jooyoung K, Chiwon A, Seungjae L 2018 Physica A 510 507Google Scholar

    [6]

    Hanisch A, Tolujew J, Richter K 2003 Proc. Winter Simul. Conf. 2 1635

    [7]

    Crociani L, Lämmel G, Park H J, Vizzari G 2017 Transportation Research Board. Annual Meeting of the Transportation Research Board Washington, D.C., USA, Jan, 2017 p1

    [8]

    Lämmel G, Flötteröd G 2015 Proc. Comput. Sci 52 950Google Scholar

    [9]

    Kaji M, Inohara T 2017 Physica A 467 85Google Scholar

    [10]

    Shi M, Lee E W M, Ma Y 2018 Physica A 497 198Google Scholar

    [11]

    胡俊, 游磊 2014 63 080507Google Scholar

    Hu J, You L 2014 Acta Phys. Sin. 63 080507Google Scholar

    [12]

    Hu J, You L, Wei J, Gu M S, Liang Y 2014 Phys. Lett. A 378 1913Google Scholar

    [13]

    张磊, 岳昊, 李梅, 王帅, 米雪玉 2015 64 060505

    Zhang L, Yue H, Li M, Wang S, Mi X Y 2015 Acta Phys. Sin. 64 060505

    [14]

    任刚, 陆丽丽, 王炜 2012 61 144501Google Scholar

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501Google Scholar

    [15]

    胥旋, 史聪灵, 李建, 车洪磊 2018 中国安全生产科学技术 14 20

    Xu X, Shi C L, Li J, Che H L 2018 J. Saf. Sci. Technol. 14 20

    [16]

    金泽人, 阮欣, 李越 2018 同济大学学报(自然科学版) 46 1026Google Scholar

    Jin Z R, Ruan X, Li Y 2018 J. Tongji Univ. (Nat. Sci.) 46 1026Google Scholar

    [17]

    陆卓谟, 秦文虎 2011 东南大学学报(自然科学版) 41 1295Google Scholar

    Lu Z M, Qin W H 2011 J. Southeast Univ. (Nat. Sci. Ed.) 41 1295Google Scholar

    [18]

    张维, 郑小平, 程礼盛 2013 电子科技大学学报(社科版) 15 26

    Zhang W, Zheng X P, Cheng L S 2013 J. Univ. Electron. Sci. Technol. Chin. (Social Sci. Ed.) 15 26

    [19]

    Cao S C, Song W G, Lü W, Fang Z M 2015 Physica A 436 45Google Scholar

    [20]

    陈雍容 2012 博士学位论文 (武汉: 华中科技大学)

    Chen Y R 2012 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [21]

    杨兆升, 高学英, 孙迪 2011 交通运输工程学报 11 114Google Scholar

    Yang Z S, Gao X Y, Sun D 2011 J. Traff. Transp. Eng. 11 114Google Scholar

    [22]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487Google Scholar

    [23]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507Google Scholar

    [24]

    于彦飞 2008 博士学位论文 (合肥: 中国科学技术大学)

    Yu Y F 2008 Ph. D. Disseration (Hefei: University of Science and Technology of China) (in Chinese)

    [25]

    Xu X, Song W G, Zheng H Y 2008 Physica A 387 5567Google Scholar

    [26]

    Ma J, Song W G, Zhang J, Lo S M, Liao G X 2010 Physica A 389 2101Google Scholar

  • 图 1  场域模型中的运动过程示意图

    Fig. 1.  Sketch map of the movement process in FF model.

    图 2  平面网格划分向道路元胞切分转变示意图

    Fig. 2.  Change from plane mesh to road cell segmentation.

    图 3  疏散道路元胞间宏观状态量更新示意图

    Fig. 3.  The update of macro-state variable between road cells.

    图 4  疏散道路元胞间宏观状态量更新规则示意图 (a) 无加载源; (b) 有加载源

    Fig. 4.  The update rule of macro-state variable between the evacuation road cells: (a) Without load source; (b) with load source.

    图 5  研究区域的空间范围及边界

    Fig. 5.  The spatial scope and boundary of the study area.

    图 6  路网的元胞切分示意图

    Fig. 6.  The road cell segmentation of the road network.

    图 7  各出口覆盖疏散道路范围示意图

    Fig. 7.  Evacuation range of the roads covered by each exit.

    图 8  “源加载”元胞加载概率密度分布图

    Fig. 8.  Probability density distribution figure of “source loading”cell.

    图 9  各出口及总疏散人数随时间变化关系

    Fig. 9.  The relationship between the exits and the total number of evacuees varies with time.

    图 10  各出口及总疏散剩余人数随时间变化关系

    Fig. 10.  The total number of remaining evacuees at each exit varies with time.

    图 11  “观测”元胞的位置分布

    Fig. 11.  The location distribution of “observed”cellular

    图 12  各“观测”元胞人数随时间的变化

    Fig. 12.  Changes in the number of “observed” cells over time.

    图 13  各“观测”元胞速度随时间的变化情况

    Fig. 13.  Variations of cell velocity with time in each observed cell.

    图 14  空间人员数量分布图 (a) t = 100 s; (b) t = 200 s; (c) t = 300 s; (d) t = 400 s; (e) t = 500 s; (f) t = 600 s

    Fig. 14.  Spatial staffing distributions: (a) t = 100 s; (b) t = 200 s; (c) t = 300 s; (d) t = 400 s; (e) t = 500 s; (f) t = 600 s.

    表 1  区域道路元胞编码统计信息

    Table 1.  Statistical information of regional road cellular coding.

    道路
    编号
    长/m宽/m元胞
    数量
    “源加载”元胞“出口”元胞
    12801228Cell1,8Cell1,1
    2290629Cell2,9,
    Cell2,29
    3230623Cell3,23
    4290629Cell4,9,
    Cell4,17
    5200620Cell5,9Cell5,1
    69069
    76867
    8250625
    9180618Cell9,5,
    Cell9,13
    10795680Cell10,59,
    Cell10,80
    119069Cell11,9
    12148615
    13530653Cell13,21
    147067
    15326633Cell15,22Cell15,33
    下载: 导出CSV

    表 2  模型参数

    Table 2.  Model parameters.

    参数含义
    l道路元胞长度10 m
    w道路元胞宽度6 m
    vf自由疏散速度1.5 m/s
    $\Delta t$计算时间间隔1 s
    ρm拥塞临界密度5 per/m2
    下载: 导出CSV

    表 3  各“源加载”元胞加载人数

    Table 3.  The number of pedestrians loaded by each ‘source loading’ cell.

    “源加载”
    元胞
    加载总
    人数/人
    “源加载”
    元胞
    加载总
    人数/人
    Cell1, 8500 Cell2, 9500
    Cell2, 29500 Cell4, 9700
    Cell4, 17500 Cell5, 9900
    Cell9, 5800 Cell9, 13800
    Cell10, 59600 Cell10, 80600
    Cell11, 9600 Cell13, 21700
    Cell15, 22500
    下载: 导出CSV

    表 4  各出口疏散人数

    Table 4.  Evacuation number at each exit.

    出口疏散总人数/人
    出口11600
    出口21700
    出口33200
    出口41700
    总计8200
    下载: 导出CSV
    Baidu
  • [1]

    Miyagawa D, Ichinose G 2020 Physica A 549 124376Google Scholar

    [2]

    Ji J W, Lu L G, Jin Z H, Wei S P, Ni L 2018 Physica A 509 1034Google Scholar

    [3]

    Maniccam S 2003 Physica A 321 653Google Scholar

    [4]

    Leng B, Wang J Y, Zhao W Y, Xiong Z 2014 Physica A 402 119Google Scholar

    [5]

    Jooyoung K, Chiwon A, Seungjae L 2018 Physica A 510 507Google Scholar

    [6]

    Hanisch A, Tolujew J, Richter K 2003 Proc. Winter Simul. Conf. 2 1635

    [7]

    Crociani L, Lämmel G, Park H J, Vizzari G 2017 Transportation Research Board. Annual Meeting of the Transportation Research Board Washington, D.C., USA, Jan, 2017 p1

    [8]

    Lämmel G, Flötteröd G 2015 Proc. Comput. Sci 52 950Google Scholar

    [9]

    Kaji M, Inohara T 2017 Physica A 467 85Google Scholar

    [10]

    Shi M, Lee E W M, Ma Y 2018 Physica A 497 198Google Scholar

    [11]

    胡俊, 游磊 2014 63 080507Google Scholar

    Hu J, You L 2014 Acta Phys. Sin. 63 080507Google Scholar

    [12]

    Hu J, You L, Wei J, Gu M S, Liang Y 2014 Phys. Lett. A 378 1913Google Scholar

    [13]

    张磊, 岳昊, 李梅, 王帅, 米雪玉 2015 64 060505

    Zhang L, Yue H, Li M, Wang S, Mi X Y 2015 Acta Phys. Sin. 64 060505

    [14]

    任刚, 陆丽丽, 王炜 2012 61 144501Google Scholar

    Ren G, Lu L L, Wang W 2012 Acta Phys. Sin. 61 144501Google Scholar

    [15]

    胥旋, 史聪灵, 李建, 车洪磊 2018 中国安全生产科学技术 14 20

    Xu X, Shi C L, Li J, Che H L 2018 J. Saf. Sci. Technol. 14 20

    [16]

    金泽人, 阮欣, 李越 2018 同济大学学报(自然科学版) 46 1026Google Scholar

    Jin Z R, Ruan X, Li Y 2018 J. Tongji Univ. (Nat. Sci.) 46 1026Google Scholar

    [17]

    陆卓谟, 秦文虎 2011 东南大学学报(自然科学版) 41 1295Google Scholar

    Lu Z M, Qin W H 2011 J. Southeast Univ. (Nat. Sci. Ed.) 41 1295Google Scholar

    [18]

    张维, 郑小平, 程礼盛 2013 电子科技大学学报(社科版) 15 26

    Zhang W, Zheng X P, Cheng L S 2013 J. Univ. Electron. Sci. Technol. Chin. (Social Sci. Ed.) 15 26

    [19]

    Cao S C, Song W G, Lü W, Fang Z M 2015 Physica A 436 45Google Scholar

    [20]

    陈雍容 2012 博士学位论文 (武汉: 华中科技大学)

    Chen Y R 2012 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)

    [21]

    杨兆升, 高学英, 孙迪 2011 交通运输工程学报 11 114Google Scholar

    Yang Z S, Gao X Y, Sun D 2011 J. Traff. Transp. Eng. 11 114Google Scholar

    [22]

    Muramatsu M, Irie T, Nagatani T 1999 Physica A 267 487Google Scholar

    [23]

    Burstedde C, Klauck K, Schadschneider A, Zittartz J 2001 Physica A 295 507Google Scholar

    [24]

    于彦飞 2008 博士学位论文 (合肥: 中国科学技术大学)

    Yu Y F 2008 Ph. D. Disseration (Hefei: University of Science and Technology of China) (in Chinese)

    [25]

    Xu X, Song W G, Zheng H Y 2008 Physica A 387 5567Google Scholar

    [26]

    Ma J, Song W G, Zhang J, Lo S M, Liao G X 2010 Physica A 389 2101Google Scholar

  • [1] 张山, 张红伟, 苗淼, 冯苗苗, 雷洪, 王强. 高Cr铸铁中M7C3碳化物与奥氏体共生长的元胞自动机模拟.  , 2021, 70(21): 218102. doi: 10.7498/aps.70.20210725
    [2] 张士杰, 王颖明, 王琦, 李晨宇, 李日. 基于元胞自动机-格子玻尔兹曼模型的枝晶碰撞行为模拟.  , 2021, 70(23): 238101. doi: 10.7498/aps.70.20211292
    [3] 王培良, 张婷, 肖英杰. 蚁群元胞优化算法在人群疏散路径规划中的应用.  , 2020, 69(8): 080504. doi: 10.7498/aps.69.20191774
    [4] 方辉, 薛桦, 汤倩玉, 张庆宇, 潘诗琰, 朱鸣芳. 温度梯度区域熔化作用下熔池迁移的元胞自动机模拟.  , 2019, 68(4): 048102. doi: 10.7498/aps.68.20181587
    [5] 董力耘, 陈立, 段晓茵. 基于教室人群疏散实验的行人流建模和模拟.  , 2015, 64(22): 220505. doi: 10.7498/aps.64.220505
    [6] 梁龙, 焦阳. 微环境促进的侵袭性肿瘤生长的元胞自动机模拟.  , 2015, 64(5): 058706. doi: 10.7498/aps.64.058706
    [7] 魏雷, 林鑫, 王猛, 黄卫东. 激光立体成形中熔池凝固微观组织的元胞自动机模拟.  , 2015, 64(1): 018103. doi: 10.7498/aps.64.018103
    [8] 陈瑞, 许庆彦, 柳百成. 基于元胞自动机方法的定向凝固枝晶竞争生长数值模拟.  , 2014, 63(18): 188102. doi: 10.7498/aps.63.188102
    [9] 胡俊, 游磊. 三维空间行人疏散的元胞自动机模型.  , 2014, 63(8): 080507. doi: 10.7498/aps.63.080507
    [10] 李日, 沈焕弟, 冯长海, 潘红, 冯传宁. 一个新的用于元胞自动机模拟微观组织的溶质分配模型及其计算验证.  , 2013, 62(18): 188106. doi: 10.7498/aps.62.188106
    [11] 永贵, 黄海军, 许岩. 菱形网格的行人疏散元胞自动机模型.  , 2013, 62(1): 010506. doi: 10.7498/aps.62.010506
    [12] 石玉峰, 许庆彦, 柳百成. 基于改进元胞自动机模型的三元合金枝晶生长的数值模拟.  , 2012, 61(10): 108101. doi: 10.7498/aps.61.108101
    [13] 杨晓阔, 蔡理, 康强, 李政操, 陈祥叶, 赵晓辉. 磁性量子元胞自动机拐角结构的理论模拟和实验.  , 2012, 61(9): 097503. doi: 10.7498/aps.61.097503
    [14] 吴孟武, 熊守美. 采用元胞自动机法模拟二元规则共晶生长.  , 2011, 60(5): 058103. doi: 10.7498/aps.60.058103
    [15] 岳昊, 邵春福, 关宏志, 段龙梅. 基于元胞自动机的行人视线受影响的疏散流仿真研究.  , 2010, 59(7): 4499-4507. doi: 10.7498/aps.59.4499
    [16] 黄锋, 邸洪双, 王广山. 用元胞自动机方法模拟镁合金薄带双辊铸轧过程凝固组织.  , 2009, 58(13): 313-S318. doi: 10.7498/aps.58.313
    [17] 李庆定, 董力耘, 戴世强. 公交车停靠诱发交通瓶颈的元胞自动机模拟.  , 2009, 58(11): 7584-7590. doi: 10.7498/aps.58.7584
    [18] 岳昊, 邵春福, 姚智胜. 基于元胞自动机的行人疏散流仿真研究.  , 2009, 58(7): 4523-4530. doi: 10.7498/aps.58.4523
    [19] 李 强, 李殿中, 钱百年. 元胞自动机方法模拟枝晶生长.  , 2004, 53(10): 3477-3481. doi: 10.7498/aps.53.3477
    [20] 谭云亮, 周辉, 王泳嘉, 马志涛. 模拟细观非均质材料破坏演化的物理元胞自动机理论.  , 2001, 50(4): 704-710. doi: 10.7498/aps.50.704
计量
  • 文章访问数:  5444
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 修回日期:  2021-02-19
  • 上网日期:  2021-05-16
  • 刊出日期:  2021-05-20

/

返回文章
返回
Baidu
map