-
在已有的几种溶质再分配计算模型的基础上, 建立了一个新的更为合理的溶质再分配模型.该模型充分考虑了枝晶生长过程中可能出现的固/液界面元胞的各种状态及其邻居元胞的各种状态, 根据这两者的不同状态, 分别建立不同的计算公式展开计算. 利用所建立的模型消除了原有的扩散控制的元胞自动机(CA)生长模型存在的在晶界处元胞不凝固的缺陷. 接着, 为了进一步验证模型的可靠性, 在Kurz-Giovanola-Trivedi方法控制的CA生长模型中引入新的溶质再分配计算模型, 对Al-4.7 wt%Cu 合金铸锭进行了模拟计算, 并与实验结果进行了金相组织和成分分布两方面的对比, 表明新模型具有较好的精确性.Based on the several solute redistribution models, a more reasonable solute redistribution model is presented. The cellular states on the solid/liquid interface and the states of its neighboring cells possibly occurring during the grain growth are fully considered in the model, and different formulas are built for different cases. Firstly, the simulation result shows that the disadvantage of the original cellular automation (CA) model (its grain growth is controlled by solute distribution), in which the cells on the grain boundary are kept unsolidified all the time, is eliminated. Then, in order to verify the reliability of the new model, the new model is introduced into the CA model in which grain growth is controlled by Kurz-Giovanola-Trivedi model. The microstructure of the Al-4.7 wt%Cu ingot is calculated. The simulation results are in good accordance with experimental results in two aspects of microstructure morphology and concentration distribution.
[1] Lan Y J, Xiao N M, Li D Z 2005 Acta Mater. 53 991
[2] Chen F Y, Jie W Q 2004 Acta Metall. Sin. 40 664 (in Chinese) [陈福义, 介万奇 2004 金属学报 40 664]
[3] Li Q, Ma Y C, Liu K, Kang X H, Li D Z 2007 Acta Metall. Sin. 43 217 (in Chinese) [李强, 马颖澈, 刘奎, 康秀红, 李殿中 2007 金属学报 43 217]
[4] Beltran-Sanchez L, Stefanescu D M 2003 Metall. Mater. Trans. A 34 367
[5] Beltran-Sanchez L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[6] Goldak A A 1997 Can. Metall. Quart. 36 57
[7] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P 1999 Metall. Mater. Trans. A 30 3153
[8] Chen J 2005 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese) [陈晋 2005 博士学位论文 (南京: 东南大学)]
[9] Rappaz M, Gandin C A 1993 Acta Metall. Mater. 41 345
[10] Kurz W, Giovanola B, Trivedi R 1986 Acta Metall. 34 823
[11] Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233
[12] Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278 (in Chinese) [潘诗琰, 朱鸣芳 2009 58 278]
[13] Wu M, Ludwig A, Fjeld A 2010 Comput. Mater. Sci. 50 43
-
[1] Lan Y J, Xiao N M, Li D Z 2005 Acta Mater. 53 991
[2] Chen F Y, Jie W Q 2004 Acta Metall. Sin. 40 664 (in Chinese) [陈福义, 介万奇 2004 金属学报 40 664]
[3] Li Q, Ma Y C, Liu K, Kang X H, Li D Z 2007 Acta Metall. Sin. 43 217 (in Chinese) [李强, 马颖澈, 刘奎, 康秀红, 李殿中 2007 金属学报 43 217]
[4] Beltran-Sanchez L, Stefanescu D M 2003 Metall. Mater. Trans. A 34 367
[5] Beltran-Sanchez L, Stefanescu D M 2004 Metall. Mater. Trans. A 35 2471
[6] Goldak A A 1997 Can. Metall. Quart. 36 57
[7] Gandin C A, Desbiolles J L, Rappaz M, Thevoz P 1999 Metall. Mater. Trans. A 30 3153
[8] Chen J 2005 Ph. D. Dissertation (Nanjing: Southeast University) (in Chinese) [陈晋 2005 博士学位论文 (南京: 东南大学)]
[9] Rappaz M, Gandin C A 1993 Acta Metall. Mater. 41 345
[10] Kurz W, Giovanola B, Trivedi R 1986 Acta Metall. 34 823
[11] Gandin C A, Rappaz M 1994 Acta Metall. Mater. 42 2233
[12] Pan S Y, Zhu M F 2009 Acta Phys. Sin. 58 278 (in Chinese) [潘诗琰, 朱鸣芳 2009 58 278]
[13] Wu M, Ludwig A, Fjeld A 2010 Comput. Mater. Sci. 50 43
计量
- 文章访问数: 6972
- PDF下载量: 480
- 被引次数: 0