搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子核质量模型的检验

李涛 黎春青 周厚兵 王宁

引用本文:
Citation:

原子核质量模型的检验

李涛, 黎春青, 周厚兵, 王宁

Test of nuclear mass models

Li Tao, Li Chun-Qing, Zhou Hou-Bing, Wang Ning
PDF
HTML
导出引用
  • 基于AME2016发布的基态原子核质量数据, 分别从模型的精度及实验预言的中子新幻数两方面系统比较分析了八个普适核质量模型的可靠性及预言能力. 分区系统的计算了八个核质量模型预言的核质量均方根偏差, 分析发现对现有实验数据精确度较好的是Bhagwat和WS4两个模型. 通过分析中子壳能隙随中子数的变化趋势发现KTUY, WS3和WS4三个模型可以较好地再现中子新幻数N = 32引起的突变行为, 预言了在Cl和Ar同位素链中N = 32极有可能是新的幻数. 通过分析超重区域α衰变能随中子数的变化趋势发现FRDM12, WS3和WS4三个模型均可以较好地再现N = 152, 162的子壳现象, 且预言了对于质子数Z = 108—114同位素链在N = 184处原子核的寿命相对较长.
    The reliability and prediction ability of 8 global nuclear mass models is systematically analyzed in terms of the accuracy of the model and the new neutron magic number predicted by experiments based on the ground-state nuclear mass data from AME2016. The root-mean-square (RMS) deviations of nuclear mass predicted by 8 nuclear mass models are calculated by subregion, and find that the Bhagwat and WS4 models possess better accuracy to describe the existing experimental data. By analyzing the trend of the neutron shell energy gap varying with neutron number, it is found that the KTUY, WS3 and WS4 models can well represent the mutation behavior caused by the new magic number N = 32, and it is predicted that N = 32 is likely to be a new magic number in the Cl isotope chain and Ar isotope chain. By analyzing the variation trend of α decay energy in the superheavy region, it is found that the FRDM12, WS3 and WS4 models can reproduce the phenomena of subshell with N = 152 and N = 162 well, and predict the relatively long life of nuclei at the neutron number N = 184 for the isotope chain with proton number Z = 108—114. The comprehensive analysis shows that the mass model with good accuracy cannot reproduce shell evolution behavior. For example, the Bhagwat model has the same accuracy as the WS4 model, but it cannot reproduce the mutation behavior of the new magic number N = 32, 152 and 162. But the KTUY model and FRDM12 model can reproduce the new magic number behavior of N = 32, 152 and 162, respectively, although the RMS deviation is slightly larger. The RMS deviation of WS4 model is small and can describe the shell evolution behavior in the nuclear mass well.
      通信作者: 李涛, litao@gxnu.edu.cn
    • 基金项目: 国家自然科学基金联合基金(批准号: U1867212)、国家自然科学基金(批准号: 11965003, 11505035, 11675266)、广西自然科学基金(批准号: 2017GXNSFAA198160, 2017GXNSFGA198001)和广西高校中青年教师科研基础能力提升项目(批准号: 2019KY0061)资助的课题
      Corresponding author: Li Tao, litao@gxnu.edu.cn
    • Funds: Project supported by the Joint Funds of the National Natural Science Foundation of China (Grant No. U1867212), the National Natural Science Foundation of China (Grant Nos. 11965003, 11505035, 11675266), the Natural Science Foundation of Guangxi (Grant Nos. 2017GXNSFAA198160, 2017GXNSFGA198001), and the Basic Scientific Research Ability of Young and Middle-aged Teachers in Guangxi Colleges and Universities, China (Grant No. 2019KY0061)
    [1]

    Roubin A, Atanasov D, Blaum K, George S, Herfurth F, Kisler D, Kowalska M, Kreim S, Lunney D, Manea V, Minaya Ramirez E, Mougeot M, Neidherr D, Rosenbusch M, Schweikhard L, Welker A, Wienholtz F, Wolf R N, Zuber K 2017 Phys. Rev. C 96 014310Google Scholar

    [2]

    Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322Google Scholar

    [3]

    Wang Y Z, Gao Y H, Cui J P, Gu J Z 2020 Commun. Theor. Phys. 72 025303Google Scholar

    [4]

    Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320Google Scholar

    [5]

    Xu X, Wang M, Zhang Y H, Xu H S, Shuai P, Tu X L, Yuri A L, Zhou X H, Sun B H, Yuan Y J, Xia J W, Yang J C, Klaus B, Chen R J, Chen X C, Fu C Y, Ge Z, Hu Z G, Huang W J, Liu D W, Lan Y H, Ma X W, Mao R S, Uesaka T, Xiao G Q, Xing Y M, Yamaguchi T, Yamaguchi Y, Zeng Q, Yan X L, Zhao H W, Zhao T C, Zhang W, Zhan W L 2015 Chin. Phys. C 39 104001Google Scholar

    [6]

    Rosenbusch M, Ascher P, Atanasov D, Barbieri C, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, Cipollone A, George S, Herfurth F, Kowalska M, Kreim S, Lunney D, Manea V, Navrátil P, Neidherr D, Schweikhard L, Somà V, Stanja J, Wienholtz, F, Wolf R N, Zuber K 2015 Phys. Rev. Lett. 114 202501Google Scholar

    [7]

    Reiter M P, Ayet San Andrés S, Dunling E, Kootte B, Leistenschneider E, Andreoiu C, Babcock C, Barquest B R, Bollig J, Brunner T, Dillmann I, Finlay A, Gwinner G, Graham L, Holt J D, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, McKay J E, Paul S F, Steinbrügge R, Thompson R, Tracy J L, Jr, Wieser M E, Will C, Dickel T, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. C 98 024310Google Scholar

    [8]

    Leistenschneider E, Reiter M P, Ayet San Andrés S, Kootte B, Holt J D, Navrátil P, Babcock C, Barbieri C, Barquest B R, Bergmann J, Bollig J, Brunner T, Dunling E, Finlay A, Geissel H, Graham L, Greiner F, Hergert H, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, Leach K G, Lippert W, McKay J E, Paul S F, Schwenk A, Short D, Simonis J, Somà V, Steinbrügge R, Stroberg S R, Thompson R, Wieser M E, Will C, Yavor M, Andreoiu C, Dickel T, Dillmann I, Gwinner G, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. Lett. 120 062503Google Scholar

    [9]

    Michimasa S, Kobayashi M, Kiyokawa Y, Ota S, Ahn D S, Baba H, Berg G P A, Dozono M, Fukuda N, Furuno T, Ideguchi E, Inabe N, Kawabata T, Kawase S Kisamori K, Kobayashi K, Kubo T, Kubota Y, Lee C S, Matsushita M, Miya H, Mizukami A, Nagakura H, Nishimura D, Oikawa H, Sakai H, Shimizu Y, Stolz A, Suzuki H, Takaki M, Takeda H, Takeuchi S, Tokieda H, Uesaka T, Yako K, Yamaguchi Y, Yanagisawa Y, Yokoyama R, Yoshida K, Shimoura S 2018 Phys. Rev. Lett. 121 022506Google Scholar

    [10]

    Mougeot M, Atanasov D, Blaum K, Chrysalidis K, Goodacre T D, Fedorov D, Fedosseev V, George S, Herfurth F, Holt J D, Lunney D, Manea V, Marsh B, Neidherr D, Rosenbusch M, Rothe S, Schweikhard L, Schwenk A, Seiffert C, Simonis J, Stroberg S R, Welker A, Wienholtz F, Wolf R N, Zuber K 2018 Phys. Rev. Lett. 120 232501Google Scholar

    [11]

    Manea V, Karthein J, Atanasov D, Bender M, Blaum K, Cocolios T E, Eliseev S, Herlert A, Holt J D, Huang W J, Litvinov Y A, Lunney D, Menéndez J, Mougeot M, Neidherr D, Schweikhard L, Schwenk A, Simonis J, Welker A, Wienholtz F, Zuber K 2020 Phys. Rev. Lett. 124 092502Google Scholar

    [12]

    Erler J, Birge N, Kortelainen M, Nazarewicz W, Olsen E, Perhac A M, Stoitsov M 2012 Nature 486 509Google Scholar

    [13]

    Ramirez E M, Ackermann D, Blaum K, Block M, Droese C, Düllmann C E, Dworschak M, Eibach M, Eliseev S, Haettner E, Herfurth F, Heßberger F P, Hofmann S, Ketelaer J, Marx G, Mazzocco M, Nesterenko D, Novikov Y N, Plaß W R, Rodríguez D, Scheidenberger C, Schweikhard L, Thirolf P G, Weber C 2012 Science 337 1207Google Scholar

    [14]

    Hamilton J H, Hofmann S, Oganessian Y T 2013 Annu. Rev. Nucl. Part. Sci. 63 383Google Scholar

    [15]

    周善贵 2014 物理 43 817Google Scholar

    Zhou S G 2014 Physics 43 817Google Scholar

    [16]

    周善贵 2017 原子核物理评论 34 318Google Scholar

    Zhou S G 2017 Nucl. Phys. Rev. 34 318Google Scholar

    [17]

    Li P C, Zhang H F, Wang Y J 2017 Chin. Phys. C 41 114103Google Scholar

    [18]

    Düllmann C E, Block M 2018 Sci. Am. 318 46Google Scholar

    [19]

    Nazarewicz W 2018 Nat. Phys. 14 537Google Scholar

    [20]

    李竹, 牛中明, 孙保华, 王宁, 孟杰 2012 61 072601Google Scholar

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601Google Scholar

    [21]

    何建军, 周小红, 张玉虎 2013 物理 42 484

    He J J, Zhou X H, Zhang Y H 2013 Physics 42 484

    [22]

    李竹, 孙保华, 孟杰 2013 物理 42 505

    Li Z, Sun B H, Meng J 2013 Physics 42 505

    [23]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšic T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172Google Scholar

    [24]

    Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330Google Scholar

    [25]

    Li Z, Miu Z M, Sun B H 2019 Sci. China, Ser. G 62 982011Google Scholar

    [26]

    唐晓东, 李阔昂 2019 物理 48 633Google Scholar

    Tang X D, Li K A 2019 Physics 48 633Google Scholar

    [27]

    Möler P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1Google Scholar

    [28]

    王猛, 张玉虎, 周小红 2020 中国科学: 物理学力学天文学 50 052006Google Scholar

    Wang M, Zhang Y H, Zhou X H 2020 Sci. Sin.Phys. Mech. Astron. 50 052006Google Scholar

    [29]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [30]

    Möler P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1Google Scholar

    [31]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305Google Scholar

    [32]

    Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304Google Scholar

    [33]

    Liu M, Wang N, Deng Y G, Wu X Z 2011 Phys. Rev. C 84 014333Google Scholar

    [34]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [35]

    Bhagwat A 2014 Phys. Rev. C 90 064306Google Scholar

    [36]

    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 024308Google Scholar

    [37]

    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 061302(RGoogle Scholar

    [38]

    Goriely S, Chamel N, Pearson J M 2016 Phys. Rev. C 93 034337Google Scholar

    [39]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [40]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121-122 1Google Scholar

    [41]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23(RGoogle Scholar

    [42]

    Zuker A P 2008 Rev. Mex. Fís. 54 129

    [43]

    Nayak R C, Satpathy L 2012 At. Data Nucl. Data Tables 98 616Google Scholar

    [44]

    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 89 024311Google Scholar

    [45]

    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 90 017302Google Scholar

    [46]

    Sobiczewski A, Litvinov Y A, Palczewski M 2018 At. Data Nucl. Data Tables 119 1Google Scholar

    [47]

    Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B H 2014 Phys. Rev. C 90 014303Google Scholar

    [48]

    Hua X M, Heng T H, Niu Z M, Sun B H, Guo J Y 2012 Sci. China, Ser. G 55 2414Google Scholar

    [49]

    Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311Google Scholar

  • 图 1  八个核质量模型对轻核(8 ≤ Z < 28)、中等-I(28 ≤ Z < 50)、中等-II(50 ≤ Z < 82)、重核(82 ≤ Z < 100)以及超重(Z ≥ 100>)五个区域质量描述的均方根偏差

    Fig. 1.  Root-mean-square deviations of the mass of light (8 ≤ Z < 28), medium-I (28 ≤ Z < 50), medium-II (50 ≤ Z < 82), heavy (82 ≤ Z < 100), and super-heavy (Z ≥ 100) are calculated by the 8 nuclear mass models.

    图 2  八个核质量模型的理论值与实验值的均方根偏差随ε的变化趋势

    Fig. 2.  Root-mean-square deviation between the predictions of the 8 nuclear mass models and the experimental values varies with the ε.

    图 3  K, Ca, Sc, Ti和V同位素链的中子壳能隙随中子数的变化趋势

    Fig. 3.  Variation trend of neutron shell gaps in K, Ca, Sc, Ti and V isotope chains with neutron number.

    图 4  八个核质量模型计算的K, Ca, Sc, Ti和V同位素链的中子壳能隙随中子数的变化趋势

    Fig. 4.  Neutron shell gaps of K, Ca, Sc, Ti and V isotopic chains calculated by 8 nuclear mass models vary with the neutron number

    图 5  Cl和Ar同位素链中子壳能隙随中子数的变化趋势, 竖线表示误差

    Fig. 5.  Variation trend of neutron shell gaps of Cl and Ar isotope chains with neutron number, the vertical bar represents the error.

    图 6  质子数$ Z=100-110 $为偶数同位素链的α衰变能随中子数的变化趋势

    Fig. 6.  Alpha decay energy of even isotope chains for the proton number $ Z=100-110 $ vary with the neutron number.

    图 7  八个核质量模型计算的质子数$ Z=100-110 $为偶数同位素链的α衰变能随中子数的变化趋势

    Fig. 7.  Alpha decay energy of even isotope chains for the proton number Z = 100-110 calculated by 8 nuclear mass models vary with the neutron number.

    图 8  FRDM12和WS4模型计算的质子数$Z=112- $$ 124$为偶数同位素链的α衰变能随中子数的变化趋势, 竖线表示误差

    Fig. 8.  Alpha decay energy of even isotope chains for the proton number Z = 100–110 calculated by the FRDM12 and WS4 models vary with the neutron number, the vertical bar represents the error.

    表 1  八个核质量模型的基态质量、单中子分离能、单质子分离能、双中子分离能及双质子分离能的均方根偏差

    Table 1.  Root-mean-square deviations of the ground state mass, single-neutron separation energy, single-proton separation energy, two-neutron separation energy and two-proton separation energy of the 8 nuclear mass models.

    模型M/MeVSn/MeVSp/MeVS2n/MeVS2p/MeV
    KTUY0.7240.3060.3670.3830.527
    FRDM120.5990.3510.3680.4550.469
    HFB270.5170.4240.4460.4230.464
    DZ310.4220.2900.3070.3420.379
    INM120.3810.3720.3690.3750.386
    WS30.3430.2740.3020.2960.358
    WS40.3020.2600.2780.2760.326
    Bhagwat0.3010.2820.2960.3060.329
    下载: 导出CSV
    Baidu
  • [1]

    Roubin A, Atanasov D, Blaum K, George S, Herfurth F, Kisler D, Kowalska M, Kreim S, Lunney D, Manea V, Minaya Ramirez E, Mougeot M, Neidherr D, Rosenbusch M, Schweikhard L, Welker A, Wienholtz F, Wolf R N, Zuber K 2017 Phys. Rev. C 96 014310Google Scholar

    [2]

    Wang N, Liu M, Wu X Z 2010 Phys. Rev. C 81 044322Google Scholar

    [3]

    Wang Y Z, Gao Y H, Cui J P, Gu J Z 2020 Commun. Theor. Phys. 72 025303Google Scholar

    [4]

    Mo Q H, Liu M, Wang N 2014 Phys. Rev. C 90 024320Google Scholar

    [5]

    Xu X, Wang M, Zhang Y H, Xu H S, Shuai P, Tu X L, Yuri A L, Zhou X H, Sun B H, Yuan Y J, Xia J W, Yang J C, Klaus B, Chen R J, Chen X C, Fu C Y, Ge Z, Hu Z G, Huang W J, Liu D W, Lan Y H, Ma X W, Mao R S, Uesaka T, Xiao G Q, Xing Y M, Yamaguchi T, Yamaguchi Y, Zeng Q, Yan X L, Zhao H W, Zhao T C, Zhang W, Zhan W L 2015 Chin. Phys. C 39 104001Google Scholar

    [6]

    Rosenbusch M, Ascher P, Atanasov D, Barbieri C, Beck D, Blaum K, Borgmann C, Breitenfeldt M, Cakirli R B, Cipollone A, George S, Herfurth F, Kowalska M, Kreim S, Lunney D, Manea V, Navrátil P, Neidherr D, Schweikhard L, Somà V, Stanja J, Wienholtz, F, Wolf R N, Zuber K 2015 Phys. Rev. Lett. 114 202501Google Scholar

    [7]

    Reiter M P, Ayet San Andrés S, Dunling E, Kootte B, Leistenschneider E, Andreoiu C, Babcock C, Barquest B R, Bollig J, Brunner T, Dillmann I, Finlay A, Gwinner G, Graham L, Holt J D, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, McKay J E, Paul S F, Steinbrügge R, Thompson R, Tracy J L, Jr, Wieser M E, Will C, Dickel T, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. C 98 024310Google Scholar

    [8]

    Leistenschneider E, Reiter M P, Ayet San Andrés S, Kootte B, Holt J D, Navrátil P, Babcock C, Barbieri C, Barquest B R, Bergmann J, Bollig J, Brunner T, Dunling E, Finlay A, Geissel H, Graham L, Greiner F, Hergert H, Hornung C, Jesch C, Klawitter R, Lan Y, Lascar D, Leach K G, Lippert W, McKay J E, Paul S F, Schwenk A, Short D, Simonis J, Somà V, Steinbrügge R, Stroberg S R, Thompson R, Wieser M E, Will C, Yavor M, Andreoiu C, Dickel T, Dillmann I, Gwinner G, Plaß W R, Scheidenberger C, Kwiatkowski A A, Dilling J 2018 Phys. Rev. Lett. 120 062503Google Scholar

    [9]

    Michimasa S, Kobayashi M, Kiyokawa Y, Ota S, Ahn D S, Baba H, Berg G P A, Dozono M, Fukuda N, Furuno T, Ideguchi E, Inabe N, Kawabata T, Kawase S Kisamori K, Kobayashi K, Kubo T, Kubota Y, Lee C S, Matsushita M, Miya H, Mizukami A, Nagakura H, Nishimura D, Oikawa H, Sakai H, Shimizu Y, Stolz A, Suzuki H, Takaki M, Takeda H, Takeuchi S, Tokieda H, Uesaka T, Yako K, Yamaguchi Y, Yanagisawa Y, Yokoyama R, Yoshida K, Shimoura S 2018 Phys. Rev. Lett. 121 022506Google Scholar

    [10]

    Mougeot M, Atanasov D, Blaum K, Chrysalidis K, Goodacre T D, Fedorov D, Fedosseev V, George S, Herfurth F, Holt J D, Lunney D, Manea V, Marsh B, Neidherr D, Rosenbusch M, Rothe S, Schweikhard L, Schwenk A, Seiffert C, Simonis J, Stroberg S R, Welker A, Wienholtz F, Wolf R N, Zuber K 2018 Phys. Rev. Lett. 120 232501Google Scholar

    [11]

    Manea V, Karthein J, Atanasov D, Bender M, Blaum K, Cocolios T E, Eliseev S, Herlert A, Holt J D, Huang W J, Litvinov Y A, Lunney D, Menéndez J, Mougeot M, Neidherr D, Schweikhard L, Schwenk A, Simonis J, Welker A, Wienholtz F, Zuber K 2020 Phys. Rev. Lett. 124 092502Google Scholar

    [12]

    Erler J, Birge N, Kortelainen M, Nazarewicz W, Olsen E, Perhac A M, Stoitsov M 2012 Nature 486 509Google Scholar

    [13]

    Ramirez E M, Ackermann D, Blaum K, Block M, Droese C, Düllmann C E, Dworschak M, Eibach M, Eliseev S, Haettner E, Herfurth F, Heßberger F P, Hofmann S, Ketelaer J, Marx G, Mazzocco M, Nesterenko D, Novikov Y N, Plaß W R, Rodríguez D, Scheidenberger C, Schweikhard L, Thirolf P G, Weber C 2012 Science 337 1207Google Scholar

    [14]

    Hamilton J H, Hofmann S, Oganessian Y T 2013 Annu. Rev. Nucl. Part. Sci. 63 383Google Scholar

    [15]

    周善贵 2014 物理 43 817Google Scholar

    Zhou S G 2014 Physics 43 817Google Scholar

    [16]

    周善贵 2017 原子核物理评论 34 318Google Scholar

    Zhou S G 2017 Nucl. Phys. Rev. 34 318Google Scholar

    [17]

    Li P C, Zhang H F, Wang Y J 2017 Chin. Phys. C 41 114103Google Scholar

    [18]

    Düllmann C E, Block M 2018 Sci. Am. 318 46Google Scholar

    [19]

    Nazarewicz W 2018 Nat. Phys. 14 537Google Scholar

    [20]

    李竹, 牛中明, 孙保华, 王宁, 孟杰 2012 61 072601Google Scholar

    Li Z, Niu Z M, Sun B H, Wang N, Meng J 2012 Acta Phys. Sin. 61 072601Google Scholar

    [21]

    何建军, 周小红, 张玉虎 2013 物理 42 484

    He J J, Zhou X H, Zhang Y H 2013 Physics 42 484

    [22]

    李竹, 孙保华, 孟杰 2013 物理 42 505

    Li Z, Sun B H, Meng J 2013 Physics 42 505

    [23]

    Niu Z M, Niu Y F, Liang H Z, Long W H, Nikšic T, Vretenar D, Meng J 2013 Phys. Lett. B 723 172Google Scholar

    [24]

    Ma C, Li Z, Niu Z M, Liang H Z 2019 Phys. Rev. C 100 024330Google Scholar

    [25]

    Li Z, Miu Z M, Sun B H 2019 Sci. China, Ser. G 62 982011Google Scholar

    [26]

    唐晓东, 李阔昂 2019 物理 48 633Google Scholar

    Tang X D, Li K A 2019 Physics 48 633Google Scholar

    [27]

    Möler P, Mumpower M R, Kawano T, Myers W D 2019 At. Data Nucl. Data Tables 125 1Google Scholar

    [28]

    王猛, 张玉虎, 周小红 2020 中国科学: 物理学力学天文学 50 052006Google Scholar

    Wang M, Zhang Y H, Zhou X H 2020 Sci. Sin.Phys. Mech. Astron. 50 052006Google Scholar

    [29]

    Wang M, Audi G, Kondev F G, Huang W J, Naimi S, Xu X 2017 Chin. Phys. C 41 030003Google Scholar

    [30]

    Möler P, Sierk A J, Ichikawa T, Sagawa H 2016 At. Data Nucl. Data Tables 109-110 1Google Scholar

    [31]

    Koura H, Tachibana T, Uno M, Yamada M 2005 Prog. Theor. Phys. 113 305Google Scholar

    [32]

    Wang N, Liang Z Y, Liu M, Wu X Z 2010 Phys. Rev. C 82 044304Google Scholar

    [33]

    Liu M, Wang N, Deng Y G, Wu X Z 2011 Phys. Rev. C 84 014333Google Scholar

    [34]

    Wang N, Liu M, Wu X Z, Meng J 2014 Phys. Lett. B 734 215Google Scholar

    [35]

    Bhagwat A 2014 Phys. Rev. C 90 064306Google Scholar

    [36]

    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 024308Google Scholar

    [37]

    Goriely S, Chamel N, Pearson J M 2013 Phys. Rev. C 88 061302(RGoogle Scholar

    [38]

    Goriely S, Chamel N, Pearson J M 2016 Phys. Rev. C 93 034337Google Scholar

    [39]

    Geng L S, Toki H, Meng J 2005 Prog. Theor. Phys. 113 785Google Scholar

    [40]

    Xia X W, Lim Y, Zhao P W, Liang H Z, Qu X Y, Chen Y, Liu H, Zhang L F, Zhang S Q, Kim Y, Meng J 2018 At. Data Nucl. Data Tables 121-122 1Google Scholar

    [41]

    Duflo J, Zuker A P 1995 Phys. Rev. C 52 R23(RGoogle Scholar

    [42]

    Zuker A P 2008 Rev. Mex. Fís. 54 129

    [43]

    Nayak R C, Satpathy L 2012 At. Data Nucl. Data Tables 98 616Google Scholar

    [44]

    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 89 024311Google Scholar

    [45]

    Sobiczewski A, Litvinov Y A 2014 Phys. Rev. C 90 017302Google Scholar

    [46]

    Sobiczewski A, Litvinov Y A, Palczewski M 2018 At. Data Nucl. Data Tables 119 1Google Scholar

    [47]

    Zheng J S, Wang N Y, Wang Z Y, Niu Z M, Niu Y F, Sun B H 2014 Phys. Rev. C 90 014303Google Scholar

    [48]

    Hua X M, Heng T H, Niu Z M, Sun B H, Guo J Y 2012 Sci. China, Ser. G 55 2414Google Scholar

    [49]

    Niu Z M, Fang J Y, Niu Y F 2019 Phys. Rev. C 100 054311Google Scholar

  • [1] 焦宝宝. 基于原子核密度的核电荷半径新关系.  , 2023, 72(11): 112101. doi: 10.7498/aps.72.20230126
    [2] 娄月申, 郭文军. 贝叶斯深度神经网络对于核质量预测的研究.  , 2022, 71(10): 102101. doi: 10.7498/aps.71.20212387
    [3] 刘兆斌, 李凯, 曾天海, 王锋, 宋新兵, 邵彬, 邹健. 类氢原子核质量对电子状态的影响.  , 2021, 70(7): 070301. doi: 10.7498/aps.70.20201754
    [4] 金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟. 基于工艺偏差的电压调控磁各向异性磁隧道结电学模型及其在读写电路中的应用.  , 2020, 69(19): 198502. doi: 10.7498/aps.69.20200228
    [5] 李菁田, 王建录, 张邦强, 荣曦明, 宁西京. 一种预测材料蠕变速率的新模型.  , 2014, 63(2): 028101. doi: 10.7498/aps.63.028101
    [6] 李竹, 牛中明, 孙保华, 王宁, 孟杰. WLW 原子核质量模型在r过程研究中的应用.  , 2012, 61(7): 072601. doi: 10.7498/aps.61.072601
    [7] 冯友君, 林中校, 张蓉竹. 连续位相板均方根梯度对焦斑匀滑特性的影响.  , 2011, 60(10): 104202. doi: 10.7498/aps.60.104202
    [8] 凌瑞良, 冯金福. 质量和频率均含时的耦合谐振子的严格波函数.  , 2009, 58(4): 2164-2167. doi: 10.7498/aps.58.2164
    [9] 丁斌刚, 张大立, 鲁定辉. 传统中子幻数稳定性的研究.  , 2009, 58(2): 865-870. doi: 10.7498/aps.58.865
    [10] 李永青, 李希国, 刘紫玉, 罗培燕, 张鹏鸣. Jackiw-Pi模型的新涡旋解.  , 2007, 56(11): 6178-6182. doi: 10.7498/aps.56.6178
    [11] 丁斌刚, 鲁定辉, 张大立. 用相对论平均场理论研究近滴线区原子核传统幻数的消失和新幻数的产生.  , 2007, 56(12): 6905-6910. doi: 10.7498/aps.56.6905
    [12] 关鹏, 刘宜华. 磁感生各向异性的一个新模型.  , 1989, 38(7): 1182-1186. doi: 10.7498/aps.38.1182
    [13] 陆明, 张强基. Ta2O5/Ta界面分析的新模型.  , 1989, 38(11): 1771-1777. doi: 10.7498/aps.38.1771
    [14] 蓝田, 徐飞岳. 一个新的Si{001}2×1表面原子结构模型.  , 1989, 38(7): 1069-1076. doi: 10.7498/aps.38.1069
    [15] 邢定钰, 袁俭. 半无限超晶格的原子均方位移.  , 1986, 35(6): 812-818. doi: 10.7498/aps.35.812
    [16] 钱昆明, 林肇华, 戴道生. 自旋波共振激发的新模型.  , 1983, 32(12): 1547-1556. doi: 10.7498/aps.32.1547
    [17] 杜东生. 一种可能的强子结构新模型.  , 1976, 25(3): 265-267. doi: 10.7498/aps.25.265
    [18] 李小源, 杜东生, 吴济民. SU3(1)×Su3(2)结构模型下一种可能的介子质量谱和新粒子的产生与衰变.  , 1976, 25(6): 541-545. doi: 10.7498/aps.25.541
    [19] 朱重远. SU6(1)×SU3(2)模型及SU8模型中强子的次强质量分裂和新粒子的质量关系.  , 1975, 24(5): 351-365. doi: 10.7498/aps.24.351
    [20] 李整武. 轻原子核的质量.  , 1957, 13(1): 30-57. doi: 10.7498/aps.13.30
计量
  • 文章访问数:  5985
  • PDF下载量:  186
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-19
  • 修回日期:  2020-12-30
  • 上网日期:  2021-05-07
  • 刊出日期:  2021-05-20

/

返回文章
返回
Baidu
map