搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于锥形硅纳米线色彩分辨探测能力仿真

孙浚凯 王军转 施毅

引用本文:
Citation:

基于锥形硅纳米线色彩分辨探测能力仿真

孙浚凯, 王军转, 施毅

Simulation of color discrimination and detection capability of coned silicon nanowire device

Sun Jun-Kai, Wang Jun-Zhuan, Shi Yi
PDF
HTML
导出引用
  • 基于拜尔滤波片(bayer filter)彩色成像技术在集成度和分辨率都已经接近极限, 无滤波片(filter-free)的彩色成像单元得到广泛的关注和研究. 纳米线自身腔模式可以实现对不同能量的光空间分布, 通过对纳米线形貌调控实现色彩分辨探测. 本文使用有限元法构建了能依靠自身结构完成分光目的, 能够作为光探测器的锥形纳米线器件. 数值模拟结果显示, 能够根据器件的顶半径、底半径、长度和材料等相关参数调整器件涵盖的波长范围和分辨率等重要参数, 并具体分析了如何进行调控. 同时进一步分析了该结构在实际制备器件时以及不同角度入射光下的器件性能. 这些研究结果对于将锥形结构纳米线作为光探测器的实际应用有重要的参考意义.
    Filterless color discriminative imaging system is greatly demanded, with the pixel size shrinking to subwavelength. Nanowires have broad applications in photodetectors and have excellent ability to discriminate color by the cavity mode effect due to its well-controlled geometry. Here we use the finite element method to simulate a coned nanowire device which can split the light as well as serve as a photodetector array. The numerical simulation results show that the important parameters such as the wavelength range and resolution realized by the device can be modulated by the top radius, bottom radius, length, and material as well. And we also analyze how the surroundings and the incident angle affect the performance of the device. These results have important reference significance for the practical application of tapered nanowires as photodetectors.
      通信作者: 王军转, wangjz@nju.edu.cn
      Corresponding author: Wang Jun-Zhuan, wangjz@nju.edu.cn
    [1]

    Lim S J, Leem D S, Park K B, et al. 2015 Sci. Rep. 5 7708Google Scholar

    [2]

    Kumar K, Duan H, Hegde R S, Koh S C, Wei J N, Yang J K 2012 Nat. Nanotechnol. 7 557Google Scholar

    [3]

    Yang Z, Albrow-Owen T, Cui H, et al. 2019 Science 365 1017Google Scholar

    [4]

    Zheng B J, Li L F, Wang J Z, Zhuge M H, Su X, Xu Y, Yang Q, Shi Y, Wang X M 2020 Adv. Opt. Mater. 8 2000191Google Scholar

    [5]

    Park H, Dan Y, Seo K, Yu Y J, Duane P K, Wober M, Crozier K B 2014 Nano Lett. 14 1804Google Scholar

    [6]

    Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T, Crozier K B 2011 Nano Lett. 11 1851Google Scholar

    [7]

    Park H, Crozier K B 2013 Sci. Rep. 3 2460Google Scholar

    [8]

    Cao L, Fan P, Barnard E S, Brown A M, Brongersma M L 2010 Nano Lett. 10 2649Google Scholar

    [9]

    Meng J J, Cadusch J J, Crozier K B 2020 Nano Lett. 20 320Google Scholar

    [10]

    Sherif S M, Elsayed M Y, Shahada L A, Swillam M A 2019 Appl. Phys. A 125 769Google Scholar

    [11]

    Kim S K, Day R W, Cahoon J F, Kempa T J, Song K D, Park H G, Lieber C M 2012 Nano Lett. 12 4971Google Scholar

    [12]

    Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar

    [13]

    Yu L, Misra S, Wang J, Qian S, Foldyna M, Xu J, Shi Y, Johnson E, Cabarrocas P R 2014 Sci. Rep. 4 4357

    [14]

    Lu J, Qian S, Yu Z, Misra S, Yu L, Xu J, Shi Y, Roca i Cabarrocas P, Chen K 2015 Opt. Express 23 A1288Google Scholar

    [15]

    Jiang Y, Zhai H, Cao W, Yang H, Liu H 2016 Electron. Mater. Lett. 12 841Google Scholar

    [16]

    Ming T, Schleusener A, Yermukhamed D, Dietzek B, Sivakov V 2019 Mater. Res. Express 6 2053

    [17]

    Ling C, Guo T, Shan M, Zhao L, Sui H, Ma S, Xue Q 2019 J. Alloys Compd. 797 1224Google Scholar

    [18]

    Liang F X, Zhao X Y, Jiang J J, Hu J G, Xie W Q, Lü J, Zhang Z X, Wu D, Luo L B 2019 Small 15 e1903831Google Scholar

    [19]

    Yu Z, Qian S, Yu L, Misra S, Zhang P, Wang J, Shi Y, Xu L, Xu J, Chen K, Rocai Cabarrocas P 2015 Opt. Express 23 5388Google Scholar

    [20]

    Sumetsky M 2011 Opt. Lett. 36 145Google Scholar

    [21]

    Solanki A, Gentile P, Calvo V, Rosaz G, Salem B, Aimez V, Drouin D, Pauc N 2012 Nano Energy 1 714Google Scholar

    [22]

    Ajiki Y, Kan T, Yahiro M, Hamada A, Adachi J, Adachi C, Matsumoto K, Shimoyama I 2016 Appl. Phys. Lett. 108 151102Google Scholar

    [23]

    Dhyani V, Jakhar A, Wellington J J, Das S 2019 J. Phys. D: Appl. Phys. 52 425103Google Scholar

    [24]

    Bao J, Bawendi M G 2015 Nature 523 67Google Scholar

    [25]

    Kurokawa U, Choi B I, Chang C C 2011 IEEE Sens. J. 11 1556Google Scholar

  • 图 1  (a) 锥形纳米线器件结构示意图; (b) 回音壁模式原理示意图

    Fig. 1.  (a) Schematic diagram of the Si nano-cone device; (b) the whispering gallery mode.

    图 2  (a) 入射光为450 nm/550 nm/650 nm时的光场分布; (b) 入射光为450 nm/550 nm/650 nm时的吸收分布; (c) 不同入射光在器件轴线上的光场模分布曲线; (d) 不同入射光在器件轴线上的吸收密度分布曲线

    Fig. 2.  The simulation results of the light field distribution (a) and the absorption (b) with the wavelength of 450, 550 and 650 nm, respectively. The light field distribution (c) and absorption (d) of the typical incident wavelength along the axial of Si nano-cone.

    图 3  (a) 入射光沿轴线入射时光场分布(左)及吸收分布(右); (b) 入射光5º入射时光场分布(左)及吸收分布(右); (c) 入射光10º入射时光场分布(左)及吸收分布(右); (d) 入射光30º入射时光场分布

    Fig. 3.  The simulation results of the light field distributions (left) and the absorption (right) with wavelength of 500 nm when the incident angle is (a) 0º, (b) 5º (c) 10º, and (d) 30º.

    图 4  不同波长入射光在不同入射角度下锥形硅的能量吸收密度

    Fig. 4.  The energy absorption density of typical incident light with different incident angles.

    图 5  入射光波长为420 nm时有石墨烯电极器件(a)和无石墨烯电极器件(b)光场分布对比; (c) 不同入射光在有石墨烯电极器件轴线上的光场分布曲线; (d) 不同入射光在无石墨烯电极器件轴线上的光场分布曲线

    Fig. 5.  (a) Comparisons of light field distribution between devices with (a) and without (b) graphene electrodes under incident light of with 420 nm. Light field distribution with typical incident light along the axis of nano-cone devices with (c) and without (d) graphene electrodes.

    图 6  锥形纳米线器件归一化响应谱仿真结果

    Fig. 6.  The simulation results of normalized response spectrum of a nano-cone device.

    表 1  在具有不同几何结构的器件中, 不同波长的入射光吸收最大值位置比较

    Table 1.  Comparisons of the max absorption position in different size devices with different geometry.

    器件1/nm器件2/nm器件3/nm
    r1 = 20r2 = 80L = 2000r1 = 20r2 = 100L = 2000r1 = 20r2 = 80L = 2500
    500 nm入射光吸收峰值直径/nm929490
    550 nm入射光吸收峰值直径/nm106107107
    两峰值距离/nm234172325
    下载: 导出CSV

    表 2  无衬底器件与有衬底器件对入射光能量吸收积分对比

    Table 2.  The total absorption of the nano-cone devices with or without substrate.

    入射光波长550 nm无衬底器件衬底器件(入
    射光偏振垂
    直衬底)
    衬底器件(入
    射光偏振平
    行于衬底)
    与无衬底器件
    比值 (光场)
    11.081.14
    与无衬底器件
    比值 (吸收)
    11.161.30
    下载: 导出CSV
    Baidu
  • [1]

    Lim S J, Leem D S, Park K B, et al. 2015 Sci. Rep. 5 7708Google Scholar

    [2]

    Kumar K, Duan H, Hegde R S, Koh S C, Wei J N, Yang J K 2012 Nat. Nanotechnol. 7 557Google Scholar

    [3]

    Yang Z, Albrow-Owen T, Cui H, et al. 2019 Science 365 1017Google Scholar

    [4]

    Zheng B J, Li L F, Wang J Z, Zhuge M H, Su X, Xu Y, Yang Q, Shi Y, Wang X M 2020 Adv. Opt. Mater. 8 2000191Google Scholar

    [5]

    Park H, Dan Y, Seo K, Yu Y J, Duane P K, Wober M, Crozier K B 2014 Nano Lett. 14 1804Google Scholar

    [6]

    Seo K, Wober M, Steinvurzel P, Schonbrun E, Dan Y, Ellenbogen T, Crozier K B 2011 Nano Lett. 11 1851Google Scholar

    [7]

    Park H, Crozier K B 2013 Sci. Rep. 3 2460Google Scholar

    [8]

    Cao L, Fan P, Barnard E S, Brown A M, Brongersma M L 2010 Nano Lett. 10 2649Google Scholar

    [9]

    Meng J J, Cadusch J J, Crozier K B 2020 Nano Lett. 20 320Google Scholar

    [10]

    Sherif S M, Elsayed M Y, Shahada L A, Swillam M A 2019 Appl. Phys. A 125 769Google Scholar

    [11]

    Kim S K, Day R W, Cahoon J F, Kempa T J, Song K D, Park H G, Lieber C M 2012 Nano Lett. 12 4971Google Scholar

    [12]

    Um H D, Solanki A, Jayaraman A, Gordon R G, Habbal F 2019 ACS Nano 13 11717Google Scholar

    [13]

    Yu L, Misra S, Wang J, Qian S, Foldyna M, Xu J, Shi Y, Johnson E, Cabarrocas P R 2014 Sci. Rep. 4 4357

    [14]

    Lu J, Qian S, Yu Z, Misra S, Yu L, Xu J, Shi Y, Roca i Cabarrocas P, Chen K 2015 Opt. Express 23 A1288Google Scholar

    [15]

    Jiang Y, Zhai H, Cao W, Yang H, Liu H 2016 Electron. Mater. Lett. 12 841Google Scholar

    [16]

    Ming T, Schleusener A, Yermukhamed D, Dietzek B, Sivakov V 2019 Mater. Res. Express 6 2053

    [17]

    Ling C, Guo T, Shan M, Zhao L, Sui H, Ma S, Xue Q 2019 J. Alloys Compd. 797 1224Google Scholar

    [18]

    Liang F X, Zhao X Y, Jiang J J, Hu J G, Xie W Q, Lü J, Zhang Z X, Wu D, Luo L B 2019 Small 15 e1903831Google Scholar

    [19]

    Yu Z, Qian S, Yu L, Misra S, Zhang P, Wang J, Shi Y, Xu L, Xu J, Chen K, Rocai Cabarrocas P 2015 Opt. Express 23 5388Google Scholar

    [20]

    Sumetsky M 2011 Opt. Lett. 36 145Google Scholar

    [21]

    Solanki A, Gentile P, Calvo V, Rosaz G, Salem B, Aimez V, Drouin D, Pauc N 2012 Nano Energy 1 714Google Scholar

    [22]

    Ajiki Y, Kan T, Yahiro M, Hamada A, Adachi J, Adachi C, Matsumoto K, Shimoyama I 2016 Appl. Phys. Lett. 108 151102Google Scholar

    [23]

    Dhyani V, Jakhar A, Wellington J J, Das S 2019 J. Phys. D: Appl. Phys. 52 425103Google Scholar

    [24]

    Bao J, Bawendi M G 2015 Nature 523 67Google Scholar

    [25]

    Kurokawa U, Choi B I, Chang C C 2011 IEEE Sens. J. 11 1556Google Scholar

  • [1] 张盛源, 夏康龙, 张茂林, 边昂, 刘增, 郭宇锋, 唐为华. 基于GaN/(BA)2PbI4异质结的自供电双模式紫外探测器.  , 2024, 73(6): 067301. doi: 10.7498/aps.73.20231698
    [2] 陈志刚, 张伟君, 张兴雨, 王钰泽, 熊佳敏, 洪逸裕, 原蒲升, 吴玲, 王镇, 尤立星. 基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路.  , 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [3] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器.  , 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [4] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展.  , 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [5] 郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩. 高综合性能超导纳米线单光子探测器.  , 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [6] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备.  , 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [7] 马璐瑶, 张兴雨, 舒志运, 肖游, 张天柱, 李浩, 尤立星. 自差分交流偏置超导纳米线单光子探测器.  , 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [8] 张文英, 胡鹏, 肖游, 李浩, 尤立星. 高效、偏振不敏感超导纳米线单光子探测器.  , 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [9] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展.  , 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [10] 魏钟鸣, 夏建白. 低维半导体偏振光探测器研究进展.  , 2019, 68(16): 163201. doi: 10.7498/aps.68.20191002
    [11] 刘顺瑞, 聂照庭, 张明磊, 王丽, 冷雁冰, 孙艳军. 利用纳米球提高红外波长上转换探测器效率.  , 2017, 66(18): 188501. doi: 10.7498/aps.66.188501
    [12] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究.  , 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [13] 李江江, 高志远, 薛晓玮, 李慧敏, 邓军, 崔碧峰, 邹德恕. 片上制备横向结构ZnO纳米线阵列紫外探测器件.  , 2016, 65(11): 118104. doi: 10.7498/aps.65.118104
    [14] 梁振江, 刘海霞, 牛燕雄, 刘凯铭, 尹贻恒. THz谐振腔型石墨烯光电探测器的设计.  , 2016, 65(16): 168101. doi: 10.7498/aps.65.168101
    [15] 夏茂鹏, 李健军, 高冬阳, 胡友勃, 盛文阳, 庞伟伟, 郑小兵. 基于相关光子多模式相关性的InSb模拟探测器定标方法.  , 2015, 64(24): 240601. doi: 10.7498/aps.64.240601
    [16] 郭泽彬, 唐军, 刘俊, 王明焕, 商成龙, 雷龙海, 薛晨阳, 张文栋, 闫树斌. 锥形光纤激发盘腔光学模式互易性研究.  , 2014, 63(22): 227802. doi: 10.7498/aps.63.227802
    [17] 袁泽, 高红, 徐玲玲, 陈婷婷, 郎颖. In, Al共掺杂ZnO纳米串光电探测器的组装与研究.  , 2012, 61(5): 057201. doi: 10.7498/aps.61.057201
    [18] 宋志明, 赵东旭, 郭振, 李炳辉, 张振中, 申德振. ZnO纳米线紫外探测器的制备和快速响应性能的研究.  , 2012, 61(5): 052901. doi: 10.7498/aps.61.052901
    [19] 刘红侠, 高博, 卓青青, 王勇淮. 极化效应对AlGaN/GaN异质结p-i-n光探测器的影响.  , 2012, 61(5): 057802. doi: 10.7498/aps.61.057802
    [20] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器.  , 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
计量
  • 文章访问数:  4588
  • PDF下载量:  165
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-01-20
  • 上网日期:  2021-05-28
  • 刊出日期:  2021-06-05

/

返回文章
返回
Baidu
map