搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究

陈睿 梁亚楠 韩建伟 王璇 杨涵 陈钱 袁润杰 马英起 上官士鹏

引用本文:
Citation:

氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究

陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏

Single event effect and total dose effect of GaN high electron mobility transistor using heavy ions and gamma rays

Chen Rui, Liang Ya-Nan, Han Jian-Wei, Wang Xuan, Yang Han, Chen Qian, Yuan Run-Jie, Ma Ying-Qi, Shangguan Shi-Peng
PDF
HTML
导出引用
  • 利用重离子加速器和60Co γ射线实验装置, 开展了p型栅和共栅共源级联结构增强型氮化镓基高电子迁移率晶体管的单粒子效应和总剂量效应实验研究, 给出了氮化镓器件单粒子效应安全工作区域、总剂量效应敏感参数以及辐射响应规律. 实验发现, p型栅结构氮化镓器件具有较好的抗单粒子和总剂量辐射能力, 其单粒子烧毁阈值大于37 MeV·cm2/mg, 抗总剂量效应水平高于1 Mrad (Si), 而共栅共源级联结构氮化镓器件则对单粒子和总剂量辐照均很敏感, 在线性能量传输值为22 MeV·cm2/mg的重离子和累积总剂量为200 krad (Si)辐照时, 器件的性能和功能出现异常. 利用金相显微镜成像技术和聚焦离子束扫描技术分析氮化镓器件内部电路结构, 揭示了共栅共源级联结构氮化镓器件发生单粒子烧毁现象和对总剂量效应敏感的原因. 结果表明, 单粒子效应诱发内部耗尽型氮化镓器件的栅肖特基势垒发生电子隧穿可能是共栅共源级联结构氮化镓器件发生源漏大电流的内在机制. 同时发现, 金属氧化物半导体场效应晶体管是导致共栅共源级联结构氮化镓器件对总剂量效应敏感的可能原因.
    The single event effect (SEE) and the total ionizing dose (TID) effect of a commercial enhancement mode gallium nitride (GaN) high electron nobility transistor (HEMT) with p-type gate structure and cascode structure are studied by using the radiation of heavy ions and 60Co gamma in this paper. The safe operating areas ofSEE, the sensitive parameters degradation of TID effect and the SEE and TID characteristics of GaN HEMT device are respectively presented. The experimental results show that the SEE and TID effect have less influence on the p-type gate GaN device. The linear energy transfer (LET) threshold of the single event Burnout effect (SEB) is higher than 37 MeV·cm2/mg and the failure threshold of TID effect is above 1M rad (Si) for p-type gate GaN device. However, the GaN HEMT device with cascode structure is much more sensitive to SEE and TID effect than p-type gate GaN device. Under heavy ions at LET of 22 MeV·cm2/mg and a cumulative dose of 200 krad (Si), the SEB phenomenon and parameters-degradation of cascode-type GaN HEMT are respectively observed. Besides, the circuit structure of the cascode-type GaN HEMT device is analyzed by using metallographic microscope imaging and focused ions beam technology. It reveals the possible reason why it is sensitive to SEB and TID for cascode-type GaN HEMT. These results show that the extra carriers caused by heavy ion radiation can tunnel the Schottky barrier formed by gate metal and AlGaN layer, leading to a large source-drain current in GaN HEMT device. Meanwhile, it is shown that the metal oxide semiconductor field-effect transistor in cascode circuit for TP90H180PS GaN HEMT may be the main reason why the cascode-type GaN HEMT is sensitive to TID.
      通信作者: 陈睿, ch.ri.520@163.com
    • 基金项目: 北京市科委项目(批准号: E039360101)和中国科学院战略性先导科技专项(A类)(批准号: XDA17010301)资助的课题
      Corresponding author: Chen Rui, ch.ri.520@163.com
    • Funds: Project supported by the Beijing Municipal Science and Technology Commission, China (Grant No. E039360101) and the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDA17010301)
    [1]

    Scheick L Z 2017 Proceedings of the 19th European Conference on Radiation and Its Effects on Components and Systems Geneva, Switzerland, October 2−6, 2017 pp 1−7

    [2]

    Bazzoli S, Girard S, Ferlet-Cavrois V, Baggio J, Paillet P, Duhamel O 2007 Proceedings of the 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10−14, 2007 pp1−5

    [3]

    郭伟玲, 陈艳芳, 李松宇, 雷亮, 柏常青 2007 发光学报 38 760

    Guo W L, Chen Y F, Li S Y, Lei L, Bai C Q 2007 Chinese J. Lumin. 38 760

    [4]

    何亮, 刘扬 2016 电源学报 14 1

    He L, Liu Y 2016 J. Power Supply 14 1

    [5]

    Martinez M J, King M. P, Baca A G, Aller-man A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [6]

    Onoda S, Hasuike A, Nabeshima Y, Sasaki H, Yajima K, Sato S I, Ohshima T 2013 IEEE Trans. Nucl. Sci. 60 4446Google Scholar

    [7]

    Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar

    [8]

    谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 58 1161Google Scholar

    Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar

    [9]

    Xiao S, Saadat O I, Chen J, Zhang E X, Cui S, Palacios T, Fleetwood D M, Ma T P 2013 IEEE Trans. Nucl. Sci. 60 4074Google Scholar

    [10]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Peng X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [11]

    Jiang R, Zhang E X, Mccurdy M W, Wang P, Gong H, Yan D, Schrimpf R D, Fleetwood D M 2019 IEEE Trans. Nucl. Sci. 66 170Google Scholar

    [12]

    Aktas O, Kuliev A, Kumar V, Schwindt R, Toshkov S, Costescu D, Stubbins J, Adesida I 2004 Solid State Electron. 48 471Google Scholar

    [13]

    张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓辉 2013 62 117103Google Scholar

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 117103Google Scholar

    [14]

    Wrobel F, Touboul A D, Pouget V, Dilillo L, Boch J, Saigne F 2017 Microelectron Reliab. 76 644

    [15]

    Rowena I B, Selvaraj S L, Egawa T 2011 IEEE Electron Device Lett. 32 1534Google Scholar

    [16]

    Khachatrian A, Roche N J H, Buchner S P, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar

    [17]

    Zerarka M, Austin P, Bensoussan A, Morancho F, Durier A 2017 IEEE Trans. Nucl. Sci. 64 2242

    [18]

    Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar

    [19]

    Oldham T, Mclean F 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [20]

    Fleetwood D M 2018 IEEE Trans. Nucl. Sci. 65 1465Google Scholar

  • 图 1  实验现场 (a)单粒子效应实验现场; (b)总剂量效应实验现场

    Fig. 1.  Experiment setup: (a) SEE experiment; (b) TID experiment.

    图 2  GaN器件开封装图 (a) GS0650111L; (b) TP90H180PS

    Fig. 2.  The decapping photograph of GaN device: (a) GS0650111L; (b) TP90H180PS.

    图 3  单粒子和总剂量效应实验电路原理图

    Fig. 3.  Schematic diagram of SEE and TID test circuit.

    图 4  (a) GS0650111L和TP90H180PS器件安全工作区域; (b)漏、栅端电流随时间的变化

    Fig. 4.  (a) Safe operating area of GS0650111L and TP90H180PS; (b) the variations of drain current and gate current with time.

    图 5  TP90H180PS器件发生SEB的实物图 (a) SEB敏感区域; (b) SEB区域局部示意图

    Fig. 5.  The SEB photograph of TP90H180PS: (a) SEB sensitive areas; (b) partial enlargement of SEB sensitive areas.

    图 6  器件漏极电流随辐照累积剂量及退火时间(168 h)的变化 (a)开态偏置; (b)关态偏置

    Fig. 6.  The variations of drain current with cumulative dose and annealing time: (a) On-state bias; (b) off-state bias.

    图 7  器件阈值电压随辐照累积剂量及退火时间(168 h)的变化关系 (a)开态偏置; (b)关态偏置

    Fig. 7.  The variations of threshold voltage with cumulative dose and annealing time: (a) On-state bias; (b) off-state bias.

    图 8  重离子辐照后关态模式下Cascode器件的栅漏电流随漏极电压的变化

    Fig. 8.  The variations of gate/drain current with drain voltage for Cascode device in off-state mode after heavy ion irradiation.

    图 9  (a) Cascode型GaN HEMT电路结构原理图; (b)耗尽型GaN HEMT的剖面示意图

    Fig. 9.  (a) The circuit schematic diagram of Cascode type GaN HEMT device; (b) the cross-section diagram of the depletion type GaN HEMT.

    图 10  p型栅GaN HEMT的剖面示意图

    Fig. 10.  The cross-section diagram of the p-type gate GaN HEMT.

    表 1  实验样品的参数

    Table 1.  Parameters of the tested sample.

    型号类型结构额定电
    压/V
    导通电
    阻/mΩ
    生产厂商
    GS0650111L增强型p型栅650150GaN Systems
    TP90H180PS增强型Cascode900205Transphorm
    下载: 导出CSV
    Baidu
  • [1]

    Scheick L Z 2017 Proceedings of the 19th European Conference on Radiation and Its Effects on Components and Systems Geneva, Switzerland, October 2−6, 2017 pp 1−7

    [2]

    Bazzoli S, Girard S, Ferlet-Cavrois V, Baggio J, Paillet P, Duhamel O 2007 Proceedings of the 9th European Conference on Radiation and Its Effects on Components and Systems Deauville, France, September 10−14, 2007 pp1−5

    [3]

    郭伟玲, 陈艳芳, 李松宇, 雷亮, 柏常青 2007 发光学报 38 760

    Guo W L, Chen Y F, Li S Y, Lei L, Bai C Q 2007 Chinese J. Lumin. 38 760

    [4]

    何亮, 刘扬 2016 电源学报 14 1

    He L, Liu Y 2016 J. Power Supply 14 1

    [5]

    Martinez M J, King M. P, Baca A G, Aller-man A A, Armstrong A A, Klein B A, Douglas E A, Kaplar R J, Swanson S E 2019 IEEE Trans. Nucl. Sci. 66 344Google Scholar

    [6]

    Onoda S, Hasuike A, Nabeshima Y, Sasaki H, Yajima K, Sato S I, Ohshima T 2013 IEEE Trans. Nucl. Sci. 60 4446Google Scholar

    [7]

    Mizuta E, Kuboyama S, Nakada Y, Takeyama A, Ohshima T, Iwata Y, Suzuki K 2018 IEEE Trans. Nucl. Sci. 65 1956Google Scholar

    [8]

    谷文萍, 张进城, 王冲, 冯倩, 马晓华, 郝跃 2009 58 1161Google Scholar

    Gu W P, Zhang J C, Wang C, Feng Q, Ma X H, Hao Y 2009 Acta Phys. Sin. 58 1161Google Scholar

    [9]

    Xiao S, Saadat O I, Chen J, Zhang E X, Cui S, Palacios T, Fleetwood D M, Ma T P 2013 IEEE Trans. Nucl. Sci. 60 4074Google Scholar

    [10]

    董世剑, 郭红霞, 马武英, 吕玲, 潘霄宇, 雷志锋, 岳少忠, 郝蕊静, 琚安安, 钟向丽, 欧阳晓平 2020 69 078501Google Scholar

    Dong S J, Guo H X, Ma W Y, Lv L, Peng X Y, Lei Z F, Yue S Z, Hao R J, Ju A A, Zhong X L, Ouyang X P 2020 Acta Phys. Sin. 69 078501Google Scholar

    [11]

    Jiang R, Zhang E X, Mccurdy M W, Wang P, Gong H, Yan D, Schrimpf R D, Fleetwood D M 2019 IEEE Trans. Nucl. Sci. 66 170Google Scholar

    [12]

    Aktas O, Kuliev A, Kumar V, Schwindt R, Toshkov S, Costescu D, Stubbins J, Adesida I 2004 Solid State Electron. 48 471Google Scholar

    [13]

    张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓辉 2013 62 117103Google Scholar

    Zhang M L, Yang R X, Li Z X, Cao X Z, Wang B Y, Wang X H 2013 Acta Phys. Sin. 62 117103Google Scholar

    [14]

    Wrobel F, Touboul A D, Pouget V, Dilillo L, Boch J, Saigne F 2017 Microelectron Reliab. 76 644

    [15]

    Rowena I B, Selvaraj S L, Egawa T 2011 IEEE Electron Device Lett. 32 1534Google Scholar

    [16]

    Khachatrian A, Roche N J H, Buchner S P, Koehler A D, Greenlee J D, Anderson T J, Warner J H, McMorrow D 2016 IEEE Trans. Nucl. Sci. 63 1995Google Scholar

    [17]

    Zerarka M, Austin P, Bensoussan A, Morancho F, Durier A 2017 IEEE Trans. Nucl. Sci. 64 2242

    [18]

    Scheick L 2014 IEEE Trans. Nucl. Sci. 61 2881Google Scholar

    [19]

    Oldham T, Mclean F 2003 IEEE Trans. Nucl. Sci. 50 483Google Scholar

    [20]

    Fleetwood D M 2018 IEEE Trans. Nucl. Sci. 65 1465Google Scholar

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应.  , 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] 崔艺馨, 马英起, 上官士鹏, 康玄武, 刘鹏程, 韩建伟. 空间用GaN功率器件单粒子烧毁效应激光定量模拟技术研究.  , 2022, 71(13): 136102. doi: 10.7498/aps.71.20212297
    [3] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应.  , 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [4] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究.  , 2021, (): . doi: 10.7498/aps.70.20211795
    [5] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性.  , 2021, 70(13): 136102. doi: 10.7498/aps.70.20201835
    [6] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究.  , 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [7] 梁昌慧, 张小安, 李耀宗, 赵永涛, 周贤明, 王兴, 梅策香, 肖国青. 不同离子激发Au靶的多电离效应.  , 2018, 67(24): 243201. doi: 10.7498/aps.67.20181642
    [8] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究.  , 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [9] 李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺. 基于原位等离子体氮化及低压化学气相沉积-Si3N4栅介质的高性能AlGaN/GaN MIS-HEMTs器件的研究.  , 2017, 66(19): 197301. doi: 10.7498/aps.66.197301
    [10] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究.  , 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [11] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究.  , 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [12] 卓青青, 刘红侠, 彭里, 杨兆年, 蔡惠民. 总剂量辐照条件下部分耗尽半导体氧化物绝缘层N沟道金属氧化物半导体器件的三种kink效应.  , 2013, 62(3): 036105. doi: 10.7498/aps.62.036105
    [13] 卓青青, 刘红侠, 王志. 三维H形栅SOINMOS器件总剂量条件下的单粒子效应.  , 2013, 62(17): 176106. doi: 10.7498/aps.62.176106
    [14] 商怀超, 刘红侠, 卓青青. 低剂量率60Co γ 射线辐照下SOI MOS器件的退化机理.  , 2012, 61(24): 246101. doi: 10.7498/aps.61.246101
    [15] 李明, 余学峰, 薛耀国, 卢健, 崔江维, 高博. 部分耗尽绝缘层附着硅静态随机存储器总剂量辐射损伤效应的研究.  , 2012, 61(10): 106103. doi: 10.7498/aps.61.106103
    [16] 胡志远, 刘张李, 邵华, 张正选, 宁冰旭, 毕大炜, 陈明, 邹世昌. 深亚微米器件沟道长度对总剂量辐照效应的影响.  , 2012, 61(5): 050702. doi: 10.7498/aps.61.050702
    [17] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应.  , 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [18] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析.  , 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [19] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探.  , 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [20] 郭红霞, 陈雨生, 张义门, 周辉, 龚建成, 韩福斌, 关颖, 吴国荣. 稳态、瞬态X射线辐照引起的互补性金属-氧化物-半导体器件剂量增强效应研究.  , 2001, 50(12): 2279-2283. doi: 10.7498/aps.50.2279
计量
  • 文章访问数:  7452
  • PDF下载量:  285
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-01
  • 修回日期:  2020-12-31
  • 上网日期:  2021-05-26
  • 刊出日期:  2021-06-05

/

返回文章
返回
Baidu
map