-
六方氮化硼(h-BN)具有六角网状晶格结构和高化学机械稳定性, 可以用来封装气体并长期保持稳定, 适合用作新型信息器件及微纳机电器件的衬底材料, 具有巨大的应用前景. 近期, 科研人员发现氢原子可以无损穿透多层h-BN, 在层间形成气泡, 可用作微纳机电器件. 本文研究了氢等离子体处理时间对h-BN气泡尺寸的影响. 发现随着处理时间的延长, 气泡尺寸整体变大且分布密集程度会降低. 原子力显微镜的测量发现所制备的h-BN气泡具有相似的形貌特征, 该特征与h-BN的杨氏模量和层间范德瓦耳斯作用相关. 此外, 发现微米尺寸气泡的内部压强约为1—2 MPa, 纳米尺寸气泡的内部压强可达到GPa量级.Hexagonal boron nitride (h-BN) is considered as an ideal substrate material for new electronic devices and nano-electromechanical (NEMS) devices, owing to its hexagonal network lattice structure and high chemical and mechanical stability. It can be used to seal gas with a long-term stability, and then has a big potential in further applications in electronics and NEMS. Recently, researchers have discovered that hydrogen atoms can penetrate multiple layers of h-BN non-destructively, forming the bubbles between layers, which can be used as NEMS devices. In this article, we investigate the effect of hydrogen plasma treatment duration on the size of h-BN bubbles. It is found that the size of bubbles becomes larger with the increase of treatment time while their distribution density decreases. It is also observed that the prepared h-BN bubbles have similar morphological characteristics, which are related to Young’s modulus of h-BN and interlayer van der Waals interaction. With the help of force-displacement curve measurement, it is obtained that the internal pressure is about 1—2 MPa for micro-sized bubbles, while the internal pressure of nano-sized bubbles can reach a value of GPa.
-
Keywords:
- h-BN /
- plasma treatment /
- nano bubbles /
- van der Waals heterostructure
[1] Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217Google Scholar
[2] Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291Google Scholar
[3] Dean C R, Young A F, Meric I, et al. 2010 Nat. Nanotechnol. 5 722Google Scholar
[4] Liu L, Ryu S, Tomasik M R, et al. 2008 Nano Lett. 8 1965Google Scholar
[5] Liu Z, Gong Y, Zhou W, et al. 2013 Nat. Commun. 4 2541Google Scholar
[6] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar
[7] Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y 2014 ACS Nano 8 1457Google Scholar
[8] Falin A, Cai Q, Santos E J G, et al. 2017 Nat. Commun. 8 1Google Scholar
[9] Bunch J S, Verbridge S S, Alden J S, et al. 2008 Nano Lett. 8 2458Google Scholar
[10] Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar
[11] Ko H, Lee J S, Kim S M 2018 Appl. Sci. Convergence Technol. 27 144Google Scholar
[12] Dai Z, Hou Y, Sanchez D A, Wang G, Brennan C J, Zhang Z, Liu L, Lu N 2018 Phys. Rev. Lett. 121 266101Google Scholar
[13] Khestanova E, Guinea F, Fumagalli L, Geim A K, Grigorieva I V 2016 Nat. Commun. 7 12587Google Scholar
[14] Wang G, Dai Z, Wang Y, Tan P, Liu L, Xu Z, Wei Y, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar
[15] Zhang B, Jiang L, Zheng Y 2019 Phys. Rev. B 99 245410Google Scholar
[16] Hu X, Gong X, Zhang M, Lu H, Xue Z, Mei Y, Chu P K, An Z, Di Z 2020 Small 16 1907170Google Scholar
[17] Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C, Novoselov K S 2011 Appl. Phys. Lett. 99 093103Google Scholar
[18] Huang P, Guo D, Xie G, Li J 2018 Phys. Chem. Chem. Phys. 20 18374Google Scholar
[19] Chirolli L, Prada E, Guinea F, Roldan R, San-Jose P 2019 2D Mater. 6 025010Google Scholar
[20] Tyurnina A V, Bandurin D A, Khestanova E, Kravets V G, Koperski M, Guinea F, Grigorenko A N, Geim A K, Grigorieva I V 2019 ACS Photonics 6 516Google Scholar
[21] He L, Wang H, Chen L, et al. 2019 Nat. Commun. 10 2815Google Scholar
[22] Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423Google Scholar
[23] Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agraït N, Rubio-Bollinger G 2012 Adv. Mater. 24 772Google Scholar
[24] Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J B, Wu J 2014 Nano Lett. 14 5097Google Scholar
[25] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[26] López-Polín G, Gómez-Navarro C, Parente V, Guinea F, Katsnelson M I, Pérez-Murano F, Gómez-Herrero J 2015 Nat. Phys. 11 26Google Scholar
[27] Wei X, Meng Z, Ruiz L, Xia W, Lee C, Kysar J W, Hone J C, Keten S, Espinosa H D 2016 ACS Nano 10 1820Google Scholar
[28] Wang G, Dai Z, Xiao J, Feng S, Weng C, Liu L, Xu Z, Huang R, Zhang Z 2019 Phys. Rev. Lett. 123 116101Google Scholar
[29] Wood J D, Harvey C M, Wang S 2017 Nat. Commun. 8 1952Google Scholar
[30] Landau L D, Lifshitz E M, Sykes J B, Reid W H, Dill E H 1960 Phys. Today 13 44Google Scholar
[31] Wang P, Gao W, Cao Z, Liechti K M, Huang R 2013 J. Appl. Mech. 80 040905Google Scholar
-
图 1 h-BN气泡的典型AFM形貌图像 (a) 具有不同尺寸以及不同分布密集程度的h-BN纳米气泡形貌图像(标尺: 1 μm); (b), (c) 分别是图(a)中红色和橙色线框区域的放大AFM测量形貌图; 所有形貌图像共享右侧的标尺
Fig. 1. Typical AFM images of h-BN bubbles: (a) Topography of h-BN bubbles in different size and distribution density. Scale bar, 1 μm; (b), (c) AFM images taken from the red and orange box in panel (a) respectively. The scale of height sits on the right.
图 2 氢等离子体处理不同时间后h-BN气泡分布情况 (a)−(c) 氢等离子体处理60, 90和120 min时, h-BN表面的气泡情况(标尺: 2 μm), 图(a)和图(b)中的插图分别是对应处理时间的单个气泡的AFM形貌图像, 图(a)插图的标尺为50 nm, 图(b)插图的标尺为400 nm; (d) 图(a)和图(b)的插图以及图(c)的气泡截面轮廓, 柱状图部分是在不同处理时间下气泡平均高度的统计
Fig. 2. Distribution of h-BN bubbles after hydrogen plasma treatment for different treatment duration. (a)−(c) AFM images of the h-BN bubbles after treated for 60, 90 and 120 min. Scale bar: 2 μm. The inserts in (a) and (b) are the AFM topography images of a single bubble corresponding to the processing time. The scale bar is 50 nm for insert in (a) and 400 nm for the insert in (b). (d) Cross-sectional profiles of bubbles in inserts of panels (a) and (b) and panel (c). The histogram part is the average bubble height under different processing times according to statistics.
图 3 气泡特征尺寸的统计分析 (a) 对不同半径气泡的尺寸比统计结果, 插图是h-BN气泡的结构示意图; (b) 具有不同尺寸比的气泡数量统计, 可以发现h-BN气泡的尺寸比集中在0.092附近, 橙色点代表气泡的尺寸比与0.092的偏差, 整体偏差值在10%范围以内(绿色区域)
Fig. 3. Characteristic analysis of bubbles. (a) Statistical results of size ratios hmax/R of bubbles with different radius. The inset is a schematic diagram of the h-BN bubble structure. (b) Statistics of bubble numbers with different size ratios. It can be found that the size ratio of h-BN bubbles is concentrated around 0.092. The orange point represents the deviation of the bubble size ratio from 0.092, and the overall deviation value is within 10% (green area).
图 4 h-BN气泡内压强的分析 (a) 通过AFM测得的不同尺寸的h-BN气泡的力-位移曲线, 随着探针下压深度的增加, 所需的力也随之增大, 不同尺寸气泡的力-位移曲线表现出不同的斜率; (b) 从实际测得的力-位移数据中提取的vdW压强随探针下压深度的关系, 虚线为对应数据组的线性拟合结果; (c) vdW压强与气泡最大高度hmax的关系图, 实线部分是针对1/hmax的非线性拟合结果
Fig. 4. Pressure analysis inside h-BN bubbles. (a) Force-displacement curves of the bubbles with different sizes are measured by AFM, which shows the force increases while the tip goes deeper. The FDCs of different-sized bubbles have diverse slopes. (b) vdW pressure inside bubbles extracted from the experimental data in panel (a) as a function of the indentation depth. Dashed lines are linear fits. (c) vdW pressure as a function of
${h}_{\max}$ , the solid line is fitted to${1/h}_{\max}$ .图 5 在短时间氢等离子体处理下得到的小尺寸气泡 (a) 小尺寸气泡的分布情况(标尺: 150 nm); (b) 图(a)中标有数字记号的小气泡截面轮廓图
Fig. 5. Small size bubbles obtained under short-time hydrogen plasma treatment: (a) The distribution of small size bubbles, the size scale is 150 nm; (b) the cross-sectional profile view of the small bubbles marked with numbers in panel (a).
-
[1] Corso M, Auwärter W, Muntwiler M, Tamai A, Greber T, Osterwalder J 2004 Science 303 217Google Scholar
[2] Decker R, Wang Y, Brar V W, Regan W, Tsai H Z, Wu Q, Gannett W, Zettl A, Crommie M F 2011 Nano Lett. 11 2291Google Scholar
[3] Dean C R, Young A F, Meric I, et al. 2010 Nat. Nanotechnol. 5 722Google Scholar
[4] Liu L, Ryu S, Tomasik M R, et al. 2008 Nano Lett. 8 1965Google Scholar
[5] Liu Z, Gong Y, Zhou W, et al. 2013 Nat. Commun. 4 2541Google Scholar
[6] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766Google Scholar
[7] Li L H, Cervenka J, Watanabe K, Taniguchi T, Chen Y 2014 ACS Nano 8 1457Google Scholar
[8] Falin A, Cai Q, Santos E J G, et al. 2017 Nat. Commun. 8 1Google Scholar
[9] Bunch J S, Verbridge S S, Alden J S, et al. 2008 Nano Lett. 8 2458Google Scholar
[10] Liu L, Feng Y P, Shen Z X 2003 Phys. Rev. B 68 104102Google Scholar
[11] Ko H, Lee J S, Kim S M 2018 Appl. Sci. Convergence Technol. 27 144Google Scholar
[12] Dai Z, Hou Y, Sanchez D A, Wang G, Brennan C J, Zhang Z, Liu L, Lu N 2018 Phys. Rev. Lett. 121 266101Google Scholar
[13] Khestanova E, Guinea F, Fumagalli L, Geim A K, Grigorieva I V 2016 Nat. Commun. 7 12587Google Scholar
[14] Wang G, Dai Z, Wang Y, Tan P, Liu L, Xu Z, Wei Y, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101Google Scholar
[15] Zhang B, Jiang L, Zheng Y 2019 Phys. Rev. B 99 245410Google Scholar
[16] Hu X, Gong X, Zhang M, Lu H, Xue Z, Mei Y, Chu P K, An Z, Di Z 2020 Small 16 1907170Google Scholar
[17] Georgiou T, Britnell L, Blake P, Gorbachev R V, Gholinia A, Geim A K, Casiraghi C, Novoselov K S 2011 Appl. Phys. Lett. 99 093103Google Scholar
[18] Huang P, Guo D, Xie G, Li J 2018 Phys. Chem. Chem. Phys. 20 18374Google Scholar
[19] Chirolli L, Prada E, Guinea F, Roldan R, San-Jose P 2019 2D Mater. 6 025010Google Scholar
[20] Tyurnina A V, Bandurin D A, Khestanova E, Kravets V G, Koperski M, Guinea F, Grigorenko A N, Geim A K, Grigorieva I V 2019 ACS Photonics 6 516Google Scholar
[21] He L, Wang H, Chen L, et al. 2019 Nat. Commun. 10 2815Google Scholar
[22] Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423Google Scholar
[23] Castellanos-Gomez A, Poot M, Steele G A, van der Zant H S J, Agraït N, Rubio-Bollinger G 2012 Adv. Mater. 24 772Google Scholar
[24] Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J B, Wu J 2014 Nano Lett. 14 5097Google Scholar
[25] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar
[26] López-Polín G, Gómez-Navarro C, Parente V, Guinea F, Katsnelson M I, Pérez-Murano F, Gómez-Herrero J 2015 Nat. Phys. 11 26Google Scholar
[27] Wei X, Meng Z, Ruiz L, Xia W, Lee C, Kysar J W, Hone J C, Keten S, Espinosa H D 2016 ACS Nano 10 1820Google Scholar
[28] Wang G, Dai Z, Xiao J, Feng S, Weng C, Liu L, Xu Z, Huang R, Zhang Z 2019 Phys. Rev. Lett. 123 116101Google Scholar
[29] Wood J D, Harvey C M, Wang S 2017 Nat. Commun. 8 1952Google Scholar
[30] Landau L D, Lifshitz E M, Sykes J B, Reid W H, Dill E H 1960 Phys. Today 13 44Google Scholar
[31] Wang P, Gao W, Cao Z, Liechti K M, Huang R 2013 J. Appl. Mech. 80 040905Google Scholar
计量
- 文章访问数: 6769
- PDF下载量: 148
- 被引次数: 0