搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究

吴甜 姚梦丽 龙孟秋

引用本文:
Citation:

钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究

吴甜, 姚梦丽, 龙孟秋

First principle calculations of interface interactions and photoelectric properties of perovskite CsPbX3 (X=Cl, Br, I) and penta-graphene van der Waals heterostructures

Wu Tian, Yao Meng-Li, Long Meng-Qiu
PDF
HTML
导出引用
  • 异质结工程是一种提高半导体材料光电性能的有效方法. 本文构建了全无机钙钛矿CsPbX3 (X=Cl, Br, I)和二维五环石墨烯penta-graphene (PG)的新型范德瓦耳斯(vdW)异质结, 利用第一性原理研究了CsPbX3-PG异质结不同界面接触的稳定性, 进而计算了稳定性较好的Pb-X接触界面异质结的电子结构和光电性能. 研究结果表明, CsPbX3-PG (X=Cl, Br, I)异质结具有II型能带排列特征, 能级差距由Cl向I逐渐缩小, 具有良好的光生载流子分离能力和电荷输运性质. 此外, 研究发现CsPbX3-PG异质结能有效拓宽材料的光吸收谱范围, 并能显著提高其光吸收能力, 尤其是CsPbI3具有最优的光吸收性能. 经理论估算, CsPbX3-PG的光电功率转换效率(PCE)可高达21%. 这些结果表明, 全无机金属卤化物钙钛矿CsPbX3-PG异质结可以有效地提高半导体材料的光电性能, 预期在光电转换器件中具有重要的应用潜力.
    Heterostructure engineering is an effective strategy to improve the optoelectronic properties of semiconductor materials. We propose a van der Waals (vdW) heterostructure based on perovskite CsPbX3 (X = Cl, Br, I) and two-dimensional penta-graphene (PG), and investigate the stabilities of two kinds of interface contacts (Pb-X and Cs-X) by first-principles calculations. And we also study the electronic structures and optoelectronic properties of CsPbX3-PG heterostructures with stabler Pb-X interface. Our results show that all the CsPbX3 (X = Cl, Br, I)-PG heterostructures possess the type-II band arrangement, that the energy level gap is gradually narrowed from Cl to I, and that there are good photogenerated carrier separation ability and charge transport property. Moreover, the absorption spectrum of CsPbX3-PG heterostructures can be broadened and the optical absorption ability is effectively improved. The power conversion efficiency (PCE) of CsPbX3-PG can increase up to 21% given by theoretical estimation. These results indicate that the optoelectronic properties of the all-inorganic metal halide perovskite CsPbX3-PG heterostructures can be effectively improved, which would become a potential candidate for high-performance photoelectric conversion devices.s.
      通信作者: 龙孟秋, mqlong@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21673296)和中南大学自由探索创新项目(批准号: 2020zzts371)资助的课题.
      Corresponding author: Long Meng-Qiu, mqlong@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21673296) and the Central South University Free Exploration Innovation Project, China (Grant No. 2020zzts371).
    [1]

    Liu B, Long M Q, Cai M Q, Ding L M, Yang J L 2019 Nano Energy 59 715Google Scholar

    [2]

    Afsaria M, Boochanib A, Hantezadehaa M 2016 Optik 127 11433Google Scholar

    [3]

    Kang Yo, Han S 2018 Phys. Rev. Appl. 10 044013Google Scholar

    [4]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739Google Scholar

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S Ⅱ 2015 Science 348 1234Google Scholar

    [6]

    Sahli F, Werner J, Kamino B, Bräuninger M 2018 Nat. Mater. 17 820Google Scholar

    [7]

    Yang Y, You J B 2017 Nature 544 155Google Scholar

    [8]

    Rahman M Z, Edvinsson T 2019 Matter 1 562Google Scholar

    [9]

    Diao X F, Tang Y L, Xie Q 2019 Chin. Phys. B 28 017802Google Scholar

    [10]

    Feng X X, Liu B, Long M Q, Cai M Q, Peng Y Y, Yang J L 2020 J. Phys. Chem. Lett. 11 6266Google Scholar

    [11]

    陆新荣, 赵颖, 刘建, 李承辉, 游效曾 2015 无机化学学报 31 1678Google Scholar

    Lu X R, Zhao Y, Liu J, Li C H, You X Z 2015 Chin. J. Inorg. Chem. 31 1678Google Scholar

    [12]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 67 158801Google Scholar

    Li SH, Li HT, Jiang YX, Tu LM, Li WB, Pan L, Yang SE, ChenYS 2018 Acta Phys. Sin. 67 158801Google Scholar

    [13]

    Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M 2016 Science 354 92Google Scholar

    [14]

    Wang Y, Dar M I, Ono L K, Zhang TY, Kan M, Li YW, Zhang LJ, Wang XT, Yang YG, Gao X Y, Qi Y B, Gratzel M, Zhao Y X 2019 Science 365 591Google Scholar

    [15]

    Antonio D B 2020 Nanomaterials 10 579Google Scholar

    [16]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 6298Google Scholar

    [17]

    Wen Y, He P, YaoY Y, Zhang Y, Cheng R Q, Yin L, Li N N, Li J, Wang J J, Wang Z X, Liu C S, Fang X, Jiang C, Wei Z P, He J 2020 Adv. Mater. 32 1906874Google Scholar

    [18]

    Yao M L, Wu T, Liu B, Li J L, Long M Q 2020 Phys. Lett. A 384 126614Google Scholar

    [19]

    Liu X F, Luo Z J, Zhou X, Wei J M, Wang Y, Guo X, Lv B, Ding Z 2019 Chin. Phys. B 28 086105Google Scholar

    [20]

    Sun J, Lee H W, Pasta M, Yuan H, Sun Q C, Wang G Q 2015 Nat. Nanotechnol. 10 980Google Scholar

    [21]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [22]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [23]

    Chen B, Yu Z S, Liu K, Huang J S 2019 Joule 3 177Google Scholar

    [24]

    Cao Y H, Li Y F, He J W, Qian C X, Zhang Q, Bai JT, Feng H J 2019 Adv. Mater. Interfaces 6 1901330Google Scholar

    [25]

    Liu B, Long MQ, Cai MQ, Ding LM, Yang JL 2018 Appl. Phys. Lett. 112 043901

    [26]

    Cao Y H, Deng Z Y, Wang M Z, Bai J T, Wei S H, Feng H J 2018 J. Phys. Chem. C 122 17228Google Scholar

    [27]

    Chao F, Xu X, Yang K, Jiang F, Wang S Y, Zhang Q L 2018 Adv. Mater. 30 1804707Google Scholar

    [28]

    Hu J S, Ji G P, Ma X G, Huang C Y 2018 Appl. Surf. Sci. 440 35Google Scholar

    [29]

    Cao Y H, Bai J T, Feng H J 2020 Chin.Phys. Lett. 37 107301Google Scholar

    [30]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Nat. Acad. Sci. 112 2372Google Scholar

    [31]

    Bravo S, Correa J, Chico L, Pacheco M 2018 Sci.Rep. 8 11070Google Scholar

    [32]

    Wang Z, Dong F, Shen B, Zhang R J, Zheng Y X, Chen L Y, Wang S Y, Wang C Z, Ho K M, Fan Y J, Jin B Y, Su W S 2016 Carbon 101 77Google Scholar

    [33]

    Wu T, Yao M Y, Li J L, Li M J, Long M Q 2020 Results Phys. 17 103103Google Scholar

    [34]

    Xiao B, Li YC, Yu X F, Cheng J B 2016 ACS Appl. Mater. Interfaces 8 35342Google Scholar

    [35]

    Wu X F, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K, Luo T F 2016 Nano Lett. 16 3925Google Scholar

    [36]

    陈天航, 潘风明, 肖扬, 袁佳仁, 刘进超, 曹浩 2018 原子与分子 35 613Google Scholar

    Chen T H, Pan F M, Xiao Y, Yuan J R, Liu J C, Cao H 2018 J. At. Mol. Phys. 35 613Google Scholar

    [37]

    Naseri M, Lin S, Jalilian J, Gu J, Chen Z 2018 Front. Phys. 13 138102Google Scholar

    [38]

    Yuan H, Li Z, Yang J 2018 J. Mater. Chem. C 6 9055Google Scholar

    [39]

    Yu J, Kuang X F, Gao Y J, Wang Y P, Chen K Q, Ding Z K, Liu J, Cong C X, He J, Liu Z W, Liu Y P 2020 Nano Lett. 20 1172Google Scholar

    [40]

    Zhao LS, Wang Y, Chen C P, Liu L L, Yu H X, Zhang Y, Chen Y, Wang X C 2017 Phys. E 91 82Google Scholar

    [41]

    Zhao H, Peng D D, He J, Li X M, Long M Q 2018 Chin. Phys. B 27 108504Google Scholar

    [42]

    Pan C N, Long M Q, He J 2018 Chin. Phys. B 27 068101Google Scholar

    [43]

    Han B X, Zhang H 2019 Chin. Phys. B 28 067301Google Scholar

    [44]

    Kang J, Li J, Li S S, Xia J B, Wang L W 2013 Nano Lett. 13 5485Google Scholar

    [45]

    Peng Q, Wang Z, Sa B, Wu B, Sun Z 2016 Sci. Rep. 6 3199

    [46]

    Xia C, Xue B, Wang T, Peng Y, Jia Y 2015 Appl. Phys. Lett. 107 193107Google Scholar

    [47]

    Butler K T, Frost J M, Walsh A 2015 Mater. Horiz. 2 228Google Scholar

    [48]

    Ravi V K, Markad G B, Nag A 2016 ACS Energy Lett. 1 665Google Scholar

    [49]

    Du M H 2015 J. Phys. Chem. Lett. 6 1461Google Scholar

    [50]

    Zhang M J, Pan J L, Zhou W Z 2019 J. Phys.: Condens. Matter 31 505302Google Scholar

    [51]

    顾芳, 孙亚飞, 张加宏, 何鹏翔, 王丽阳 2018 原子与分子 35 853Google Scholar

    Gu F, Sun Y F, Zhang J H, He P X, Wang L Y 2018 J. At. Mol. Phys. 35 853Google Scholar

    [52]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [53]

    Bernardi M, Palummo M, Grossman J C 2012 ACS Nano 6 10082Google Scholar

    [54]

    Cheng K, Guo Y, Han H, Jiang X, Zhang J F, Rajeev A, Su Y, Zhao J J 2018 Appl. Phys. Lett. 112 143902Google Scholar

  • 图 1  三种CsPbX3-PG异质结的顶部和侧面视图 (a), (b) CsPbCl3-PG; (c), (d) CsPbBr3-PG; (e), (f) CsPbI3-PG

    Fig. 1.  Top and side views of the CsPbX3-PG heterostructure: (a), (b) CsPbCl3-PG; (c), (d) CsPbBr3-PG; (e) (f) CsPbI3-PG.

    图 2  分析动力学(AIMD)模拟, 能量和温度在300 K的相对于时间的波动 (a) CsPbCl3-PG异质结; (b) CsPbBr3-PG异质结; (c) CsPbI3-PG异质结

    Fig. 2.  Energy and temperature fluctuation respect to time in AIMD simulation at 300 K: (a) CsPbCl3-PG heterostructure; (b) CsPbBr3-PG heterostructure; (c) CsPbI3-PG heterostructure.

    图 3  (a) CsPbCl3-PG, (b) CsPbBr3-PG, (c) CsPbI3-PG异质结的能带分解图, 红, 蓝线分别代表代CsPbX3和PG单层的能带

    Fig. 3.  Electronic band structures of heterostructures: (a) CsPbCl3-PG; (b) CsPbBr3-PG; (c) CsPbI3-PG. The red and blue lines represent the energy bands of CsPbX3 slabs and PG monolayer, respectively.

    图 4  CsPbX3-PG异质结的能级排列图 (a)—(c)接触前, (d)—(f) PBE计算的接触状态, (g)—(i) HSE + SOC验证的接触状态下VBM和CBM点能量本征值. 其中, 蓝色块表示PG单层和红色块分别表示CsPbX3X = Cl, Br, I)的能级

    Fig. 4.  The energy level alignment diagram of the CsPbX3-PG heterostructures: (a)–(c) the pre-contact states, (d)–(f) PBE calculated contact states and (g)–(i) HSE + SOC validated the energy eigenvalues of VBM and CBM points in the contact states. The blue blocks represent the energy level of PG monolayer and the red blocks represent the energy level of CsPbX3 slabs [X = Cl, Br, I (from left to right)].

    图 5  沿Z方向上的平面平均差分电荷密度 (a) CsPbCl3-PG, (c) CsPbBr3-PG, (e) CsPbI3-PG异质结(红色区域为PG, 蓝色区域为CsPbX3); 3D差分电荷密度 (b) CsPbCl3-PG, (d) CsPbBr3-PG, (f) CsPbI3-PG异质结(黄色代表增益电子, 绿色代表损耗电子)

    Fig. 5.  The plane-averaged electron density difference along Z direction of (a) CsPbCl3-PG, (c) CsPbBr3-PG, (e) CsPbI3-PG. 3D charge density difference of heterostructures: (b) CsPbCl3-PG, (d) CsPbBr3-PG, (f) CsPbI3-PG. (Yellow represents gain electrons, and green represents lose electrons).

    图 6  光吸收谱 (a) CsPbCl3-PG; (b) CsPbBr3-PG; (c) CsPbI3-PG异质结 (红线、蓝线和黑线分别代表CsPbX3-PG (X=Cl, Br, I)异质结、CsPbX3和PG单层的光吸收率 (X=Cl, Br, I)

    Fig. 6.  Light absorption capacity of (a) CsPbCl3-PG, (b) CsPbBr3-PG, (c) CsPbI3-PG. The red, blue and black line represent the light absorption capacity of CsPbX3-PG heterostructures, CsPbX3 slabs and PG monolayer, respectively [X=Cl, Br, I (up-down)].

    图 7  CsPbX3-PG(X=Cl, Br, I)异质结功率转换效率, 带隙和导带偏移的函数关系曲线. CsPbBr3-PG, 红色圆形; CsPbI3-PG: 红色三角形

    Fig. 7.  Power conversion efficiency contour plot as a function of the donor optical gap and conduction band offset ΔEC. Red circle and triangle represent CsPbBr3-PG and CsPbI3-PG, respectively.

    表 1  CsPbX3-PG异质结的晶格失配度和表面结合能

    Table 1.  Lattice mismatch ratio and surface binding energyof PbX and CsX interface in CsPbX3-PG heterostructures.

    X晶格失配度/%界面形成能/(meV·Å–2)
    PbX-PGCsX-PG
    Cl0.15–1.9212.42
    Br1.33–6.020.54
    I3.46–5.431.03
    下载: 导出CSV

    表 2  CsPbX3-PG异质结接触前后带隙数据

    Table 2.  Calculated band gaps of PG monolayer, CsPbX3 slabs and CsPbX3-PG heterostructures in the pre-contact state (left) and contact state (right) by PBE functional.

    X接触前(单结构)接触态(异质结)
    PGCsPbX3PGCsPbX3CsPbX3-PG
    Cl2.212.212.212.621.30
    Br2.281.772.281.791.62
    I2.361.522.361.301.20
    下载: 导出CSV
    Baidu
  • [1]

    Liu B, Long M Q, Cai M Q, Ding L M, Yang J L 2019 Nano Energy 59 715Google Scholar

    [2]

    Afsaria M, Boochanib A, Hantezadehaa M 2016 Optik 127 11433Google Scholar

    [3]

    Kang Yo, Han S 2018 Phys. Rev. Appl. 10 044013Google Scholar

    [4]

    Ball J M, Lee M M, Hey A, Snaith H J 2013 Energy Environ. Sci. 6 1739Google Scholar

    [5]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S Ⅱ 2015 Science 348 1234Google Scholar

    [6]

    Sahli F, Werner J, Kamino B, Bräuninger M 2018 Nat. Mater. 17 820Google Scholar

    [7]

    Yang Y, You J B 2017 Nature 544 155Google Scholar

    [8]

    Rahman M Z, Edvinsson T 2019 Matter 1 562Google Scholar

    [9]

    Diao X F, Tang Y L, Xie Q 2019 Chin. Phys. B 28 017802Google Scholar

    [10]

    Feng X X, Liu B, Long M Q, Cai M Q, Peng Y Y, Yang J L 2020 J. Phys. Chem. Lett. 11 6266Google Scholar

    [11]

    陆新荣, 赵颖, 刘建, 李承辉, 游效曾 2015 无机化学学报 31 1678Google Scholar

    Lu X R, Zhao Y, Liu J, Li C H, You X Z 2015 Chin. J. Inorg. Chem. 31 1678Google Scholar

    [12]

    李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生 2018 67 158801Google Scholar

    Li SH, Li HT, Jiang YX, Tu LM, Li WB, Pan L, Yang SE, ChenYS 2018 Acta Phys. Sin. 67 158801Google Scholar

    [13]

    Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M 2016 Science 354 92Google Scholar

    [14]

    Wang Y, Dar M I, Ono L K, Zhang TY, Kan M, Li YW, Zhang LJ, Wang XT, Yang YG, Gao X Y, Qi Y B, Gratzel M, Zhao Y X 2019 Science 365 591Google Scholar

    [15]

    Antonio D B 2020 Nanomaterials 10 579Google Scholar

    [16]

    Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 6298Google Scholar

    [17]

    Wen Y, He P, YaoY Y, Zhang Y, Cheng R Q, Yin L, Li N N, Li J, Wang J J, Wang Z X, Liu C S, Fang X, Jiang C, Wei Z P, He J 2020 Adv. Mater. 32 1906874Google Scholar

    [18]

    Yao M L, Wu T, Liu B, Li J L, Long M Q 2020 Phys. Lett. A 384 126614Google Scholar

    [19]

    Liu X F, Luo Z J, Zhou X, Wei J M, Wang Y, Guo X, Lv B, Ding Z 2019 Chin. Phys. B 28 086105Google Scholar

    [20]

    Sun J, Lee H W, Pasta M, Yuan H, Sun Q C, Wang G Q 2015 Nat. Nanotechnol. 10 980Google Scholar

    [21]

    Hong X, Kim J, Shi S F, Zhang Y, Jin C, Sun Y, Tongay S, Wu J, Zhang Y, Wang F 2014 Nat. Nanotechnol. 9 682Google Scholar

    [22]

    郭丽娟, 胡吉松, 马新国, 项炬 2019 68 097101Google Scholar

    Guo L J, Hu J S, Ma X G, Xiang J 2019 Acta Phys. Sin. 68 097101Google Scholar

    [23]

    Chen B, Yu Z S, Liu K, Huang J S 2019 Joule 3 177Google Scholar

    [24]

    Cao Y H, Li Y F, He J W, Qian C X, Zhang Q, Bai JT, Feng H J 2019 Adv. Mater. Interfaces 6 1901330Google Scholar

    [25]

    Liu B, Long MQ, Cai MQ, Ding LM, Yang JL 2018 Appl. Phys. Lett. 112 043901

    [26]

    Cao Y H, Deng Z Y, Wang M Z, Bai J T, Wei S H, Feng H J 2018 J. Phys. Chem. C 122 17228Google Scholar

    [27]

    Chao F, Xu X, Yang K, Jiang F, Wang S Y, Zhang Q L 2018 Adv. Mater. 30 1804707Google Scholar

    [28]

    Hu J S, Ji G P, Ma X G, Huang C Y 2018 Appl. Surf. Sci. 440 35Google Scholar

    [29]

    Cao Y H, Bai J T, Feng H J 2020 Chin.Phys. Lett. 37 107301Google Scholar

    [30]

    Zhang S H, Zhou J, Wang Q, Chen X S, Kawazoe Y, Jena P 2015 Nat. Acad. Sci. 112 2372Google Scholar

    [31]

    Bravo S, Correa J, Chico L, Pacheco M 2018 Sci.Rep. 8 11070Google Scholar

    [32]

    Wang Z, Dong F, Shen B, Zhang R J, Zheng Y X, Chen L Y, Wang S Y, Wang C Z, Ho K M, Fan Y J, Jin B Y, Su W S 2016 Carbon 101 77Google Scholar

    [33]

    Wu T, Yao M Y, Li J L, Li M J, Long M Q 2020 Results Phys. 17 103103Google Scholar

    [34]

    Xiao B, Li YC, Yu X F, Cheng J B 2016 ACS Appl. Mater. Interfaces 8 35342Google Scholar

    [35]

    Wu X F, Varshney V, Lee J, Zhang T, Wohlwend J L, Roy A K, Luo T F 2016 Nano Lett. 16 3925Google Scholar

    [36]

    陈天航, 潘风明, 肖扬, 袁佳仁, 刘进超, 曹浩 2018 原子与分子 35 613Google Scholar

    Chen T H, Pan F M, Xiao Y, Yuan J R, Liu J C, Cao H 2018 J. At. Mol. Phys. 35 613Google Scholar

    [37]

    Naseri M, Lin S, Jalilian J, Gu J, Chen Z 2018 Front. Phys. 13 138102Google Scholar

    [38]

    Yuan H, Li Z, Yang J 2018 J. Mater. Chem. C 6 9055Google Scholar

    [39]

    Yu J, Kuang X F, Gao Y J, Wang Y P, Chen K Q, Ding Z K, Liu J, Cong C X, He J, Liu Z W, Liu Y P 2020 Nano Lett. 20 1172Google Scholar

    [40]

    Zhao LS, Wang Y, Chen C P, Liu L L, Yu H X, Zhang Y, Chen Y, Wang X C 2017 Phys. E 91 82Google Scholar

    [41]

    Zhao H, Peng D D, He J, Li X M, Long M Q 2018 Chin. Phys. B 27 108504Google Scholar

    [42]

    Pan C N, Long M Q, He J 2018 Chin. Phys. B 27 068101Google Scholar

    [43]

    Han B X, Zhang H 2019 Chin. Phys. B 28 067301Google Scholar

    [44]

    Kang J, Li J, Li S S, Xia J B, Wang L W 2013 Nano Lett. 13 5485Google Scholar

    [45]

    Peng Q, Wang Z, Sa B, Wu B, Sun Z 2016 Sci. Rep. 6 3199

    [46]

    Xia C, Xue B, Wang T, Peng Y, Jia Y 2015 Appl. Phys. Lett. 107 193107Google Scholar

    [47]

    Butler K T, Frost J M, Walsh A 2015 Mater. Horiz. 2 228Google Scholar

    [48]

    Ravi V K, Markad G B, Nag A 2016 ACS Energy Lett. 1 665Google Scholar

    [49]

    Du M H 2015 J. Phys. Chem. Lett. 6 1461Google Scholar

    [50]

    Zhang M J, Pan J L, Zhou W Z 2019 J. Phys.: Condens. Matter 31 505302Google Scholar

    [51]

    顾芳, 孙亚飞, 张加宏, 何鹏翔, 王丽阳 2018 原子与分子 35 853Google Scholar

    Gu F, Sun Y F, Zhang J H, He P X, Wang L Y 2018 J. At. Mol. Phys. 35 853Google Scholar

    [52]

    Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J, Brabec C J 2006 Adv. Mater. 18 789Google Scholar

    [53]

    Bernardi M, Palummo M, Grossman J C 2012 ACS Nano 6 10082Google Scholar

    [54]

    Cheng K, Guo Y, Han H, Jiang X, Zhang J F, Rajeev A, Su Y, Zhao J J 2018 Appl. Phys. Lett. 112 143902Google Scholar

  • [1] 张子发, 袁翔, 鹿颖申, 何丹敏, 严全河, 曹浩宇, 洪峰, 蒋最敏, 徐闰, 马忠权, 宋宏伟, 徐飞. 动态热风辅助再结晶策略改善CsPbI2Br钙钛矿在大气环境下的结晶及其光电性能.  , 2024, 73(9): 098803. doi: 10.7498/aps.73.20240153
    [2] 汪帆帆, 陈栋, 袁军, 张珠峰, 姜涛, 周骏. Sb/SnC范德瓦耳斯异质结光电性质的层间转角依赖性及其应用.  , 2024, 73(22): 227101. doi: 10.7498/aps.73.20241138
    [3] 汤家鑫, 李占海, 邓小清, 张振华. GaN/VSe2范德瓦耳斯异质结电接触特性及调控效应.  , 2023, 72(16): 167101. doi: 10.7498/aps.72.20230191
    [4] 孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平. 应变和电场对Ga2SeTe/In2Se3异质结电子结构和光学性质的影响.  , 2023, 72(7): 076301. doi: 10.7498/aps.72.20222250
    [5] 王桂强, 王东升, 毕佳宇, 常嘉润, 孟凡宁. 苯基硫脲调控CsPbIBr2钙钛矿结晶及其光电性能.  , 2023, 72(15): 158801. doi: 10.7498/aps.72.20230593
    [6] 黄敏, 李占海, 程芳. 石墨烯/C3N范德瓦耳斯异质结的可调电子特性和界面接触.  , 2023, 72(14): 147302. doi: 10.7498/aps.72.20230318
    [7] 张仑, 陈红丽, 义钰, 张振华. As/HfS2范德瓦耳斯异质结电子光学特性及量子调控效应.  , 2022, 71(17): 177304. doi: 10.7498/aps.71.20220371
    [8] 孔宇晗, 王蓉, 徐明生. CuPc/MoS2范德瓦耳斯异质结荧光特性.  , 2022, 71(12): 128103. doi: 10.7498/aps.71.20220132
    [9] 姚熠舟, 曹丹, 颜洁, 刘雪吟, 王建峰, 姜舟婷, 舒海波. 氧氯化铋/铯铅氯范德瓦耳斯异质结环境稳定性与光电性质的第一性原理研究.  , 2022, 71(19): 197901. doi: 10.7498/aps.71.20220544
    [10] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性.  , 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [11] 张增星, 李东. 基于双极性二维晶体的新型p-n结.  , 2017, 66(21): 217302. doi: 10.7498/aps.66.217302
    [12] 程静云, 康朝阳, 宗海涛, 曹国华, 李明. Ag缓冲层对ZnO:Al薄膜结构与光电性能的改善.  , 2017, 66(2): 027702. doi: 10.7498/aps.66.027702
    [13] 史晓慧, 许珂敬. 溶胶-凝胶-蒸镀法制备高性能FTO薄膜.  , 2016, 65(13): 138101. doi: 10.7498/aps.65.138101
    [14] 黄立静, 任乃飞, 李保家, 周明. 激光辐照对热退火金属/掺氟二氧化锡透明导电薄膜光电性能的影响.  , 2015, 64(3): 034211. doi: 10.7498/aps.64.034211
    [15] 侯清玉, 吕致远, 赵春旺. Nb高掺杂量对锐钛矿TiO2导电和光学性能影响.  , 2015, 64(1): 017201. doi: 10.7498/aps.64.017201
    [16] 曾乐贵, 刘发民, 钟文武, 丁芃, 蔡鲁刚, 周传仓. Nb/SnO2复合薄膜的制备、结构及光电性能.  , 2011, 60(3): 038203. doi: 10.7498/aps.60.038203
    [17] 郑莹莹, 邓海涛, 万静, 李超荣. 有机-无机杂化钙钛矿自组装量子阱结构的能带调控和光电性能的研究.  , 2011, 60(6): 067306. doi: 10.7498/aps.60.067306
    [18] 宋雪云, 张俊兵, 曾祥华, 董雅娟. 电极形状对GaN基发光二极管芯片性能的影响.  , 2010, 59(7): 4989-4995. doi: 10.7498/aps.59.4989
    [19] 方 方, 郑时有, 周广有, 陈国荣, 孙大林. 氢致LaMg2Ni合金薄膜的光电性能变化.  , 2008, 57(6): 3813-3817. doi: 10.7498/aps.57.3813
    [20] 徐金宝, 郑毓峰, 李 锦, 孙言飞, 吴 荣. 丝网印刷FeS2(pyrite)薄膜的结构及光电性能.  , 2004, 53(9): 3229-3233. doi: 10.7498/aps.53.3229
计量
  • 文章访问数:  6620
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-02
  • 修回日期:  2020-10-23
  • 上网日期:  2021-02-25
  • 刊出日期:  2021-03-05

/

返回文章
返回
Baidu
map