-
在室温条件下,采用射频磁控溅射法在玻璃基底上制备出了一系列高质量的AZO薄膜和不同Ag缓冲层厚度的AZO/Ag/AZO复合薄膜.利用X射线衍射和原子力显微镜分别对薄膜的物相和表面形貌进行了表征;利用霍尔效应测试仪和紫外-可见光分光光度计等实验技术对薄膜的光电性能进行了研究.实验结果表明,Ag缓冲层厚度对AZO薄膜的晶体结构和光电性能影响较大.当Ag层厚度为10 nm时,AZO(30 nm)/Ag(10 nm)/AZO(30 nm)薄膜拥有最优品质因子,为1.59 10-1-1,方块电阻为0.75/□,可见光区平均透过率为84.2%.另外,薄膜电阻随温度的变化趋势呈现金属电阻随温度的变化特性,光电热稳定性较好.
-
关键词:
- 射频磁控溅射 /
- AZO/Ag/AZO /
- 光电性能
In order to obtain more excellent photoelectric properties of transparent conductive film, a series of high-quality AZO thin films and AZO/Ag/AZO thin films with various thickness values of Ag buffer layers are prepared on glass substrates by the radio frequency magnetron sputtering method at room temperature. The phase and surface morphologies of films are characterized by X-ray diffraction (XRD) and atomic force microscopy (AFM) respectively. The technology of Hall effect measurement and ultraviolet, visible spectrophotometer are employed to investigate the photoelectric properties of films. The electrical properties (including sheet resistance, sheet concentration and mobility) of films are also determined by using non isothermal technique to explore their thermal stability performances. The results indicate that the thickness values of Ag buffer layers have a large influence on the crystalline structures and photoelectric properties of AZO thin films. The XRD results show that with the increase of the thickness of Ag, the diffraction peak of Ag (111) is gradually enhanced, the ZnO (002) diffraction peak is gradually weakened, and the preferred orientation of ZnO (002) crystal plane is weakened. AFM test indicates that the change of Ag layer thickness has a great influence on the surface growth mode of the upper layer AZO thin film. When the Ag layer thickness is less than 5 nm, AZO thin film surface is rough and the grain size is smaller. When the Ag layer thickness is larger than 10 nm, the continuous surfaces of multilayer films begin to be shaped, directly affecte the photoelectric properties of the films. Hall effect measurement and transmittance test show that with the increase of Ag layer thickness, the transmission of AZO/Ag/AZO multilayer film gradually decreases, and also the resistance gradually decreases. When the thickness of Ag layer is 10 nm, AZO(30 nm)/Ag(10 nm)/AZO(30 nm) thin film gains a best figure of merit of 1.5910-1 -1 an average transmittance of 84.2% and a sheet resistance of 0.75 /sq. Hall effect measurement versus temperature indicates that AZO film without an Ag layer proves to be subjecte to the regular change of semiconductor resistance with temperature. When adding an Ag layer, the trend of the relationship of resistance with temperature presentes the characteristic of that metal resistance relating to temperature. Moreover, the sheet concentration of AZO with Ag layer is higher than that of AZO. The highest sheet concentration and the excellent thermal stability are obtained on AZO/Ag (10 nm)/AZO. The changes of the mobility of AZO under different temperatures turn out to be poorly stable. However, when adding an Ag layer, the better stability of AZO/Ag/AZO can be obtained. In conclusion, the photoelectric properties of films own excellent thermal stabilities with optimum thickness of Ag layer.[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488
[2] Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M, Hosono H 2006 J. Appl. Phys. 45 4303
[3] Park S H K, Hwang C S, Ryu M, Yang S, Byun C, Shin J, Lee J I, Lee K, Oh M S, Im S 2009 Adv. Mater. 21 678
[4] Chen Z Q, Liu H M, Liu Y P, Chen W, Luo Z Q, Hu X W 2009 Acta Phys. Sin. 58 4260 (in Chinese)[陈兆权, 刘海明, 刘玉萍, 陈伟, 罗志清, 胡希伟2009 58 4260]
[5] Chen M, Zhou X Y, Mao X J, Shao J J, Yang G L 2014 Acta Phys. Sin. 63 098103 (in Chinese)[陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良2014 63 098103]
[6] Le Q T, Nuesch F, Rothberg L J, Forsythe E W, Gao Y 1999 Appl. Phys. Lett. 75 1357
[7] Lee C G, Kim S J, Kim H H, Lee W W 2007 J. Korean. Phys. Soc. 50 596
[8] Fernandes G E, Lee D J, Kim J H, Kim K B, Xu J 2013 J. Mater. Sci. 48 2536
[9] Thanka R S, Subramanian B, Nanda K A K, Jayachandran M, Ramachandra R M S 2014 J. Alloys Compd. 584 611
[10] Wang F, Wu M Z, Wang Y Y, Yu Y M, Wu X M, Zhuge L J 2013 Vacuum 89 127
[11] Li F S, Zhang Y Z, Wu C X, Lin Z X, Zhang B B, Guo T L 2012 Vacuum 86 1895
[12] Sahu D R, Lin S Y, Huang J L 2007 Sol. Energy Mater. Sol. Cells 91 851
[13] Sahu D R, Lin S Y, Huang J L 2007 Appl. Surf. Sci. 253 4886
[14] Sahu D R, Lin S Y, Huang J L 2008 Thin Solid Films 516 4728
[15] Crupi I, Boscarino S, Strano V, Mirabella S, Simone F, Terrasi A 2012 Thin Solid Films 520 4432
[16] Wu H W, Yang R Y, Hsiung C M, Chu C H 2012 Thin Solid Films 520 7147
[17] Miao D G, Jiang S X, Shang S M, Chen Z M 2014 Vacuum 106 1
[18] Miao D G, Jiang S X, Shang S M, Chen Z M 2014 Ceram. Int. 40 12847
[19] Miao D G, Jiang S X, Zhao H M, Shang S M, Chen Z M 2014 J. Alloys Compd. 616 26
[20] Dimopoulos T, Radnoczi G, Horvth Z, Brckl H 2012 Thin Solid Films 520 5222
[21] Zhou L, Chen X H, Zhu F, Sun X X, Sun Z 2012 J. Phys. D:Appl. Phys. 45 505103
[22] Gong L, Lu J G, Ye Z Z 2011 Thin Solid Films 519 3870
[23] Sivaramakrishnan K, Alforda T L 2009 Appl. Phys. Lett. 94 052104
[24] Sahu D R, Huang J L 2006 Appl. Surf. Sci. 253 915
-
[1] Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M, Hosono H 2004 Nature 432 488
[2] Nomura K, Takagi A, Kamiya T, Ohta H, Hirano M, Hosono H 2006 J. Appl. Phys. 45 4303
[3] Park S H K, Hwang C S, Ryu M, Yang S, Byun C, Shin J, Lee J I, Lee K, Oh M S, Im S 2009 Adv. Mater. 21 678
[4] Chen Z Q, Liu H M, Liu Y P, Chen W, Luo Z Q, Hu X W 2009 Acta Phys. Sin. 58 4260 (in Chinese)[陈兆权, 刘海明, 刘玉萍, 陈伟, 罗志清, 胡希伟2009 58 4260]
[5] Chen M, Zhou X Y, Mao X J, Shao J J, Yang G L 2014 Acta Phys. Sin. 63 098103 (in Chinese)[陈明, 周细应, 毛秀娟, 邵佳佳, 杨国良2014 63 098103]
[6] Le Q T, Nuesch F, Rothberg L J, Forsythe E W, Gao Y 1999 Appl. Phys. Lett. 75 1357
[7] Lee C G, Kim S J, Kim H H, Lee W W 2007 J. Korean. Phys. Soc. 50 596
[8] Fernandes G E, Lee D J, Kim J H, Kim K B, Xu J 2013 J. Mater. Sci. 48 2536
[9] Thanka R S, Subramanian B, Nanda K A K, Jayachandran M, Ramachandra R M S 2014 J. Alloys Compd. 584 611
[10] Wang F, Wu M Z, Wang Y Y, Yu Y M, Wu X M, Zhuge L J 2013 Vacuum 89 127
[11] Li F S, Zhang Y Z, Wu C X, Lin Z X, Zhang B B, Guo T L 2012 Vacuum 86 1895
[12] Sahu D R, Lin S Y, Huang J L 2007 Sol. Energy Mater. Sol. Cells 91 851
[13] Sahu D R, Lin S Y, Huang J L 2007 Appl. Surf. Sci. 253 4886
[14] Sahu D R, Lin S Y, Huang J L 2008 Thin Solid Films 516 4728
[15] Crupi I, Boscarino S, Strano V, Mirabella S, Simone F, Terrasi A 2012 Thin Solid Films 520 4432
[16] Wu H W, Yang R Y, Hsiung C M, Chu C H 2012 Thin Solid Films 520 7147
[17] Miao D G, Jiang S X, Shang S M, Chen Z M 2014 Vacuum 106 1
[18] Miao D G, Jiang S X, Shang S M, Chen Z M 2014 Ceram. Int. 40 12847
[19] Miao D G, Jiang S X, Zhao H M, Shang S M, Chen Z M 2014 J. Alloys Compd. 616 26
[20] Dimopoulos T, Radnoczi G, Horvth Z, Brckl H 2012 Thin Solid Films 520 5222
[21] Zhou L, Chen X H, Zhu F, Sun X X, Sun Z 2012 J. Phys. D:Appl. Phys. 45 505103
[22] Gong L, Lu J G, Ye Z Z 2011 Thin Solid Films 519 3870
[23] Sivaramakrishnan K, Alforda T L 2009 Appl. Phys. Lett. 94 052104
[24] Sahu D R, Huang J L 2006 Appl. Surf. Sci. 253 915
计量
- 文章访问数: 6346
- PDF下载量: 292
- 被引次数: 0