搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低功耗、高灵敏的Bi2O2Se光电导探测器

李丹阳 韩旭 徐光远 刘筱 赵枭钧 李庚伟 郝会颖 董敬敬 刘昊 邢杰

引用本文:
Citation:

低功耗、高灵敏的Bi2O2Se光电导探测器

李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰

Bi2O2Se photoconductive detector with low power consumption and high sensitivity

Li Dan-Yang, Han Xu, Xu Guang-Yuan, Liu Xiao, Zhao Xiao-Jun, Li Geng-Wei, Hao Hui-Ying, Dong Jing-Jing, Liu Hao, Xing Jie
PDF
HTML
导出引用
  • 窄带隙二维半导体材料Bi2O2Se由于其具有较高的载流子迁移率和优异的热学、化学稳定性, 在紫外-可见-近红外光谱区的光电子学领域有着广阔的应用前景. 本文通过化学气相沉积法合成了大面积高质量的Bi2O2Se单晶薄膜, 讨论了温度对薄膜形貌的影响规律, 并在此基础上制备了Bi2O2Se光电导探测器, 分别研究了Bi2O2Se在云母基片和氧化硅基片上的光电性能. 在532 nm光照下, 源漏电压仅为0.5 V时, 云母片上的Bi2O2Se薄膜的光电响应度和比探测率高达45800 A/W和2.65 × 1012 Jones (1 Jones = 1 cm·Hz1/2·W–1), 相应的光电增益超过105. 研究结果表明 Bi2O2Se在低功耗、高灵敏度的光电器件中具有优异的探测潜力.
    With the advent of graphene, atomically thin two-dimensional materials receive great attention in both science and technology. However, the characterization of zero-band gap of graphene hinders its applications in semiconductor logic and memory devices. To make up for the imperfection of graphene, one has made efforts to search for other two-dimensional layered materials. The Bi2O2Se is an emerging material with very high electron mobility, modest bandgap, and excellent thermal and chemical stability. In this work, high-quality Bi2O2Se thin films are synthesized through chemical vapor deposition. The effect of temperature on the morphology and size distribution of Bi2O2Se thin film are discussed in detail experimentally. Under an optimized experimental condition, the Bi2O2Se thin films with a lateral size of 100 μm are achieved. Interestingly, Bi2O2Se nanowires are obtained at a lower growth temperature (620–640 ℃). The photoelectric performances of Bi2O2Se on mica and silicon oxide substrate are examined based on a photoconductive mode. At a small bias of 0.5 V, the responsivity and specific detectivity of the rectangular Bi2O2Se thin film on the mica substrate reach 45800 A/W and 2.65 × 1012 Jones, respectively, and the corresponding photoelectric gain is greater than 105. The photoelectric performance of our device is comparable to the best results achieved by other research groups, which may be related to the higher quality and appropriate absorption thickness. The Bi2O2Se nanowire and Bi2O2Se thin film transferred to Si/SiO2 by a polystyrene-assisted method also exhibit a good photoresponse under the illumination of a 532 nm laser with a high optical power density (127.4 mW/cm2). The experimental results demonstrate that the Bi2O2Se has great potential applications in the optoelectronic devices with low power consumption and high sensitivity.
      通信作者: 李庚伟, ligw@cugb.edu.cn ; 邢杰, xingjie@cugb.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974318)资助的课题
      Corresponding author: Li Geng-Wei, ligw@cugb.edu.cn ; Xing Jie, xingjie@cugb.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11974318)
    [1]

    Fu Q, Yang L, Wang W H, Han A L, Huang J, Du P W, Fan Z Y, Zhang J Y, Xiang B 2015 Adv. Mater. 27 4732Google Scholar

    [2]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys.Rev. Lett. 105 136805Google Scholar

    [3]

    武佩, 胡潇, 张健, 孙连峰 2017 66 218102Google Scholar

    Wu P, Hu X, Zhang J, Sun L F 2017 Acta Phys. Sin. 66 218102Google Scholar

    [4]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar

    [5]

    Li B, Huang L, Zhong M, Li Y, Wang Y, Li J B, Wei Z M 2016 Adv. Electron. Mater. 2 1600298Google Scholar

    [6]

    黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 64 038103Google Scholar

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103Google Scholar

    [7]

    Fu Q D, Zhu C, Zhao X X, et al. 2019 Adv. Mater. 31 1804945Google Scholar

    [8]

    Tian X L, Luo H Y, Wei R F, et al. 2018 Adv. Mater. 30 1801021Google Scholar

    [9]

    Yin J B, Tan Z J, Hong H, et al. 2018 Nat. Commun. 9 3311Google Scholar

    [10]

    Wu J X, Qiu C G, Fu H X, et al. 2019 Nano Lett. 19 197Google Scholar

    [11]

    Wu J X, Yuan H T, Meng M M, et al. 2017 Nat. Nanotechnol. 12 530Google Scholar

    [12]

    Tong T, Chen Y F, Qin S C, et al. 2019 Adv. Funct. Mater. 29 1905806Google Scholar

    [13]

    Liu X L, Li R P, Hong C Y, Huang G F, Pan D F, Ni Z H, Huang Y Q, Ren X M, Cheng Y C, Huang W 2019 Nanoscale 11 20707Google Scholar

    [14]

    Luo P, Zhu Ge F W, Wang F K, Lian L Y, Liu K L, Zhang J B, Zhai T Y 2019 ACS Nano 13 9028Google Scholar

    [15]

    Wu J X, Liu Y J, Tan Z J, Tan C W, Yin J B, Li T R, Tu T, Peng H L 2017 Adv. Mater. 29 1704060Google Scholar

    [16]

    Zhang C C, Wu J X, Sun Y W, Tan C W, Li T R, Tu T, Zhang Y C, Liang Y, Zhou X H, Gao P, Peng H L 2020 J. Am. Chem. Soc. 142 2726Google Scholar

    [17]

    Wu J X, Tan C W, Tan Z J, Liu Y J, Yin J B, Dang W H, Wang M Z, Peng H L 2017 Nano Lett. 17 3021Google Scholar

    [18]

    Wu Z, Liu G L, Wang Y X, Yang X, Wei T Q, Wang Q J, Liang J, Xu N, Li Z Z, Zhu B, Qi H S, Deng Y, Zhu J 2019 Adv. Funct. Mater. 29 1906639Google Scholar

    [19]

    Li J, Wang Z X, Wen Y, Chu J W, Yin L, Cheng R Q, Lei L, He P, Jiang C, Feng L P, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [20]

    Li J, Wang Z X, Chu J W, Cheng Z Z, He P, Wang J J, Yin L, Cheng R Q, Li N N, Wen Y, He J 2019 Appl. Phys. Lett. 114 151104Google Scholar

    [21]

    Cheng T, Tan C, Zhang S Q, Teng Tu, Peng H L, Liu Z R 2018 J. Phys. Chem. C 122 19970Google Scholar

    [22]

    Pereira A L J, Santamaría-Pérez D, Ruiz-Fuertes J, et al. 2018 J. Phys. Chem. C 122 8853Google Scholar

    [23]

    Kufer D, Konstantatos G 2015 Nano Lett. 15 7307Google Scholar

    [24]

    Liu E, Long M S, Zeng J W, et al. 2016 Adv. Funct. Mater. 26 1938Google Scholar

    [25]

    Huan Y, Zhan X Y, Xu K, Yin L, Cheng Z Z, Jiang C, Wang Z X, He J 2016 Appl. Phys. Lett. 108 013101Google Scholar

    [26]

    Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar

    [27]

    Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L II, Yu B 2014 ACS Nano 8 514Google Scholar

    [28]

    Li X M, Zhu M, Du M D, Lv Z, Zhang L, Li Y C, Yang Y, Yang T T, Li X, Wang K L, Zhu H W, Fang Y 2016 Small 12 595Google Scholar

    [29]

    Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, G. Curto A, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Hwang H, Cui Y 2015 Nat. Nanotechnol. 10 707Google Scholar

    [30]

    Yu Z R, Aceves-Mijares M, Luna J A L, Deng J X 2009 Proc. SPIE 7381 73811HGoogle Scholar

  • 图 1  (a) 层状Bi2O2Se晶体结构示意图; (b) CVD法合成Bi2O2Se实验装置示意图; (c)—(e) 云母上Bi2O2Se薄膜不同放大倍数的光学照片; (f)云母上Bi2O2Se纳米线光学照片

    Fig. 1.  (a) Schematic diagram of the layered Bi2O2Se crystal structure; (b) schematic diagram of the CVD experimental setup for synthesis of Bi2O2Se film; (c)–(e) optical images of Bi2O2Se thin films grown on mica at different magnifications; (f) optical image of Bi2O2Se nanowires grown on mica.

    图 2  生长温度对Bi2O2Se薄膜形貌及尺寸分布的影响 (a)—(c) 不同生长温度下云母上Bi2O2Se薄膜的光学照片; (d) 不同生长温度下Bi2O2Se的尺寸分布图, 不同颜色代表不同尺寸范围的Bi2O2Se

    Fig. 2.  Effect of growth temperature on the morphology and the size distribution of Bi2O2Se films: (a)–(c) Optical images of Bi2O2Se thin films grown at 640, 660, 680 ℃, respectively; (d) size distribution of Bi2O2Se films prepared at different growth temperatures. Different color denotes different size range.

    图 3  (a) Bi2O2Se薄膜的原子力显微镜照片; (b) Bi2O2Se薄膜的拉曼光谱, 插图代表A1g振动模式中各原子间的相对运动

    Fig. 3.  (a) Atomic force microscope image of a typical Bi2O2Se thin film with a thickness of 20 nm; (b) Raman spectrum of Bi2O2Se thin film. The inset shows the relative motion of atoms in the A1g mode.

    图 4  (a)云母片上Bi2O2Se光电导器件的光学图像; (b)不同光功率密度下Bi2O2Se 器件的Ids-Vds曲线, 插图为器件时间响应的方波图; (c)不同偏置电压条件下, 光电流(Iph)与光功率密度的关系; (d)不同偏置电压条件下, 光增益与光功率密度的关系

    Fig. 4.  (a) Optical image of a Bi2O2Se photoconductive detector on mica; (b) Ids-Vds curves of Bi2O2Se device under illumination by laser with different optical powers; (c) light power dependence of photocurrent (Iph) under different bias; (d) relationship between light gain and light power under different bias.

    图 5  (a) 不同光功率下Bi2O2Se纳米线光电探测器的Ids-Vds曲线, 插图为器件光学图像; (b) 在不同入射光功率密度下器件的响应度和比探测率

    Fig. 5.  (a) Ids-Vds curves of Bi2O2Se nanowire photodetector on mica under different light powers. Inset is an optical image of the device. (b) Responsivity and specific detectivity of the device at different light powers.

    图 6  (a) Si/SiO2衬底上的Bi2O2Se器件示意图; (b) 不同光功率下Bi2O2Se探测器的Ids-Vds行为, 插图为器件的光学图像; (c) Iph、光增益与光源功率密度的关系; (d) Bi2O2Se探测器的响应度和比探测率对光源功率密度的依赖关系

    Fig. 6.  (a) Schematic diagram of the Bi2O2Se photodetector on a Si/SiO2 substrate; (b) Ids-Vds of Bi2O2Se detector under different light powers, the inset is an optical image of the device; (c) under different biases, the relationship between photocurrent, optical gain and light intensity; (d) light power dependence of responsivity and specific detectivity of the Bi2O2Se detector.

    表 1  Bi2O2Se与其他2D半导体光电晶体管性能比较(ME, 机械剥离)

    Table 1.  Comparison of the performance of Bi2O2Se with other 2D semiconductor phototransistors (ME represents mechanical exfoliation method).

    MaterialsFabrication methodResponsivity/A·W–1Detectivity/JonesRise time/msReference
    MoS2ME4341011120[23]
    ReS2CVD12081010[24]
    SnS2CVD167100[25]
    SnSe2CVD1000101014.5[26]
    In2Se3ME5910110.18[27]
    GrapheneCVD0.7310130.32[28]
    BPME4.8 × 10–3[29]
    Bi2O2SeCVD458001012200This work
    下载: 导出CSV
    Baidu
  • [1]

    Fu Q, Yang L, Wang W H, Han A L, Huang J, Du P W, Fan Z Y, Zhang J Y, Xiang B 2015 Adv. Mater. 27 4732Google Scholar

    [2]

    Mak K F, Lee C G, Hone J, Shan J, Heinz T F 2010 Phys.Rev. Lett. 105 136805Google Scholar

    [3]

    武佩, 胡潇, 张健, 孙连峰 2017 66 218102Google Scholar

    Wu P, Hu X, Zhang J, Sun L F 2017 Acta Phys. Sin. 66 218102Google Scholar

    [4]

    Tongay S, Zhou J, Ataca C, Lo K, Matthews T S, Li J B, Grossman J C, Wu J Q 2012 Nano Lett. 12 5576Google Scholar

    [5]

    Li B, Huang L, Zhong M, Li Y, Wang Y, Li J B, Wei Z M 2016 Adv. Electron. Mater. 2 1600298Google Scholar

    [6]

    黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 64 038103Google Scholar

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103Google Scholar

    [7]

    Fu Q D, Zhu C, Zhao X X, et al. 2019 Adv. Mater. 31 1804945Google Scholar

    [8]

    Tian X L, Luo H Y, Wei R F, et al. 2018 Adv. Mater. 30 1801021Google Scholar

    [9]

    Yin J B, Tan Z J, Hong H, et al. 2018 Nat. Commun. 9 3311Google Scholar

    [10]

    Wu J X, Qiu C G, Fu H X, et al. 2019 Nano Lett. 19 197Google Scholar

    [11]

    Wu J X, Yuan H T, Meng M M, et al. 2017 Nat. Nanotechnol. 12 530Google Scholar

    [12]

    Tong T, Chen Y F, Qin S C, et al. 2019 Adv. Funct. Mater. 29 1905806Google Scholar

    [13]

    Liu X L, Li R P, Hong C Y, Huang G F, Pan D F, Ni Z H, Huang Y Q, Ren X M, Cheng Y C, Huang W 2019 Nanoscale 11 20707Google Scholar

    [14]

    Luo P, Zhu Ge F W, Wang F K, Lian L Y, Liu K L, Zhang J B, Zhai T Y 2019 ACS Nano 13 9028Google Scholar

    [15]

    Wu J X, Liu Y J, Tan Z J, Tan C W, Yin J B, Li T R, Tu T, Peng H L 2017 Adv. Mater. 29 1704060Google Scholar

    [16]

    Zhang C C, Wu J X, Sun Y W, Tan C W, Li T R, Tu T, Zhang Y C, Liang Y, Zhou X H, Gao P, Peng H L 2020 J. Am. Chem. Soc. 142 2726Google Scholar

    [17]

    Wu J X, Tan C W, Tan Z J, Liu Y J, Yin J B, Dang W H, Wang M Z, Peng H L 2017 Nano Lett. 17 3021Google Scholar

    [18]

    Wu Z, Liu G L, Wang Y X, Yang X, Wei T Q, Wang Q J, Liang J, Xu N, Li Z Z, Zhu B, Qi H S, Deng Y, Zhu J 2019 Adv. Funct. Mater. 29 1906639Google Scholar

    [19]

    Li J, Wang Z X, Wen Y, Chu J W, Yin L, Cheng R Q, Lei L, He P, Jiang C, Feng L P, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [20]

    Li J, Wang Z X, Chu J W, Cheng Z Z, He P, Wang J J, Yin L, Cheng R Q, Li N N, Wen Y, He J 2019 Appl. Phys. Lett. 114 151104Google Scholar

    [21]

    Cheng T, Tan C, Zhang S Q, Teng Tu, Peng H L, Liu Z R 2018 J. Phys. Chem. C 122 19970Google Scholar

    [22]

    Pereira A L J, Santamaría-Pérez D, Ruiz-Fuertes J, et al. 2018 J. Phys. Chem. C 122 8853Google Scholar

    [23]

    Kufer D, Konstantatos G 2015 Nano Lett. 15 7307Google Scholar

    [24]

    Liu E, Long M S, Zeng J W, et al. 2016 Adv. Funct. Mater. 26 1938Google Scholar

    [25]

    Huan Y, Zhan X Y, Xu K, Yin L, Cheng Z Z, Jiang C, Wang Z X, He J 2016 Appl. Phys. Lett. 108 013101Google Scholar

    [26]

    Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar

    [27]

    Jacobs-Gedrim R B, Shanmugam M, Jain N, Durcan C A, Murphy M T, Murray T M, Matyi R J, Moore R L II, Yu B 2014 ACS Nano 8 514Google Scholar

    [28]

    Li X M, Zhu M, Du M D, Lv Z, Zhang L, Li Y C, Yang Y, Yang T T, Li X, Wang K L, Zhu H W, Fang Y 2016 Small 12 595Google Scholar

    [29]

    Yuan H T, Liu X G, Afshinmanesh F, Li W, Xu G, Sun J, Lian B, G. Curto A, Ye G J, Hikita Y, Shen Z X, Zhang S C, Chen X H, Brongersma M, Hwang H, Cui Y 2015 Nat. Nanotechnol. 10 707Google Scholar

    [30]

    Yu Z R, Aceves-Mijares M, Luna J A L, Deng J X 2009 Proc. SPIE 7381 73811HGoogle Scholar

  • [1] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2024, 0(0): 0-0. doi: 10.7498/aps.73.20231229
    [2] 李欣悦, 高国翔, 高强, 刘春生, 叶小娟. 二维BeB2作为镁离子电池阳极材料的理论研究.  , 2024, 73(11): 118201. doi: 10.7498/aps.73.20240134
    [3] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究.  , 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [4] 杨瑞龙, 张钰樱, 杨柯, 姜琦涛, 杨晓婷, 郭金中, 许小红. 二维钒掺杂Cr2S3纳米片的生长与磁性研究.  , 2023, 72(24): 247501. doi: 10.7498/aps.72.20231229
    [5] 费翔, 张秀梅, 付泉桂, 蔡正阳, 南海燕, 顾晓峰, 肖少庆. 基于熔融玻璃的预沉积法生长毫米级单晶MoS2及WS2-MoS2异质结.  , 2022, 71(4): 048101. doi: 10.7498/aps.71.20211735
    [6] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性.  , 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [7] 祝裕捷, 蒋涛, 叶小娟, 刘春生. 新型二维拉胀材料SiGeS的理论预测及其光电性质.  , 2022, 71(15): 153101. doi: 10.7498/aps.71.20220407
    [8] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2022, 71(1): 010701. doi: 10.7498/aps.71.20211048
    [9] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用.  , 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [10] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究.  , 2021, (): . doi: 10.7498/aps.70.20211516
    [11] 罗实, 魏大鹏, 魏大程. 二维材料在生物传感器中的应用.  , 2021, 70(6): 064701. doi: 10.7498/aps.70.20201613
    [12] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器.  , 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [13] 韩丹, 刘志华, 刘琭琭, 韩晓美, 刘东明, 禚凯, 桑胜波. 新型二维材料Ti3C2Tx MXene制备及其气敏性能研究.  , 2021, (): . doi: 10.7498/aps.70.20211048
    [14] 王铄, 王文辉, 吕俊鹏, 倪振华. 化学气相沉积法制备大面积二维材料薄膜: 方法与机制.  , 2021, 70(2): 026802. doi: 10.7498/aps.70.20201398
    [15] 龙慧, 胡建伟, 吴福根, 董华锋. 基于二维材料异质结可饱和吸收体的超快激光器.  , 2020, 69(18): 188102. doi: 10.7498/aps.69.20201235
    [16] 张宝军, 王芳, 沈稼强, 单欣, 邸希超, 胡凯, 张楷亮. 钴掺杂MoSe2共生长中氢气的作用分析及磁电特性研究.  , 2020, 69(4): 048101. doi: 10.7498/aps.69.20191302
    [17] 王聪, 刘杰, 张晗. 基于二维纳米材料的超快脉冲激光器.  , 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [18] 冯秋菊, 李芳, 李彤彤, 李昀铮, 石博, 李梦轲, 梁红伟. 外电场辅助化学气相沉积方法制备网格状β-Ga2O3纳米线及其特性研究.  , 2018, 67(21): 218101. doi: 10.7498/aps.67.20180805
    [19] 董艳芳, 何大伟, 王永生, 许海腾, 巩哲. 一种简单的化学气相沉积法制备大尺寸单层二硫化钼.  , 2016, 65(12): 128101. doi: 10.7498/aps.65.128101
    [20] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响.  , 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
计量
  • 文章访问数:  9423
  • PDF下载量:  252
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 修回日期:  2020-08-28
  • 上网日期:  2020-12-10
  • 刊出日期:  2020-12-20

/

返回文章
返回
Baidu
map