搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

可拉伸超级电容器的研究进展:电极、电解质和器件

邵光伟 郭珊珊 于瑞 陈南梁 叶美丹 刘向阳

引用本文:
Citation:

可拉伸超级电容器的研究进展:电极、电解质和器件

邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳

Stretchable supercapacitors: Electrodes, electrolytes, and devices

Shao Guang-Wei, Guo Shan-Shan, Yu Rui, Chen Nan-Liang, Ye Mei-Dan, Liu Xiang-Yang
PDF
HTML
导出引用
  • 可拉伸超级电容器因在可穿戴电子和健康监测等领域的潜在应用而受到人们的广泛关注, 它不但具备普通超级电容器功率密度高、循环寿命长、安全、成本低等优点, 而且良好的柔软性和可拉伸性使其能够很好地与可穿戴系统进行集成. 本文对已有文献中可拉伸电极/器件的制备方法进行归类、分析, 详细总结了可拉伸电极/器件的三种制备方法, 即弹性聚合物基底、可拉伸结构设计以及弹性聚合物和可拉伸结构结合; 另外, 还介绍了多功能可拉伸超级电容器和高弹性凝胶电解质的研究进展; 最后, 分析总结了可拉伸超级电容器未来发展中仍需面临的一些挑战. 期望能够激发更多的研究创造以推动可拉伸超级电容器的实际应用.
    Stretchable supercapacitors have received more and more attention due to their potential applications in wearable electronics and health monitoring. The stretchable supercapacitors have not only the advantages of high power density, long cycle life, safety and low cost of ordinary supercapacitor, but also good flexibility and stretchability to integrate well with wearable system. In this review, according to the structures of supercapacitors, the methods of preparing stretchable electrodes/devices reported in the literature are categorized and analyzed. We particularly highlight the key findings of creating stretchable electrodes/devices, which include elastic polymer substrates, tensile structure design and elastic polymer + tensile structure. In addition, the research progress of multi-functional stretchable supercapacitors and high elastic gel electrolytes are discussed. Finally, the challenges to the future development of the stretchable supercapacitors are analyzed and summarized. We expect to stimulate more research in creating stretchable supercapacitors for wide practical applications.
      通信作者: 于瑞, yurui@xmu.edu.cn ; 陈南梁, nlch@dhu.edu.cn ; 叶美丹, mdye@xmu.edu.cn ; 刘向阳, phyliuxy@nus.edu.sg
    • 基金项目: 国家级-中央高校基本科研业务费专项资金、东华大学研究生创新基金资助(CUSF-DH-D-2019046)
      Corresponding author: Yu Rui, yurui@xmu.edu.cn ; Chen Nan-Liang, nlch@dhu.edu.cn ; Ye Mei-Dan, mdye@xmu.edu.cn ; Liu Xiang-Yang, phyliuxy@nus.edu.sg
    [1]

    Wang X, Liu Z, Zhang T 2017 Small 13 1602790Google Scholar

    [2]

    Heo J S, Eom J, Kim Y H, Park S K 2018 Small 14 1703034Google Scholar

    [3]

    Weng W, Chen P, He S, Sun X, Peng H 2016 Angew. Chem. Int. Ed. 55 6140Google Scholar

    [4]

    Wu X, Peng H 2019 Sci. Bull. 64 634Google Scholar

    [5]

    Jung S, Lee J, Hyeon T, Lee M, Kim D H 2014 Adv. Mater. 26 6329Google Scholar

    [6]

    Zhai S, Karahan H E, Wei L, Qian Q, Harris A T, Minett A I, Ramakrishna S, Ng A K, Chen Y 2016 Energy Storage Mater. 3 123Google Scholar

    [7]

    Chen X, Villa N S, Zhuang Y, Chen L, Wang T, Li Z, Kong T 2019 Adv. Energy Mater. 10 1902769Google Scholar

    [8]

    Huang Y, Zhi C 2017 J. Phys. D: Appl. Phys. 50 273001Google Scholar

    [9]

    Wang Y, Ding Y, Guo X, Yu G 2019 Nano Res. 12 1978Google Scholar

    [10]

    Shao Y, El Kady M F, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner R B 2018 Chem. Rev. 118 9233Google Scholar

    [11]

    Wang K, Wu H, Meng Y, Wei Z 2014 Small 10 14Google Scholar

    [12]

    Wang Y, Song Y, Xia Y 2016 Chem. Soc. Rev. 45 5925Google Scholar

    [13]

    Lu X, Yu M, Wang G, Tong Y, Li Y 2014 Energy Environ. Sci. 7 2160Google Scholar

    [14]

    Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen Z X 2018 Adv. Sci. 5 1700322Google Scholar

    [15]

    An T, Cheng W 2018 J. Mater. Chem. A 6 15478Google Scholar

    [16]

    Wen L, Li F, Cheng H M 2016 Adv. Mater. 28 4306Google Scholar

    [17]

    Liu L, Yu Y, Yan C, Li K, Zheng Z 2015 Nat. Commun. 6 7260Google Scholar

    [18]

    Molina J, Fernández J, Inés J C, del Río A I, Bonastre J, Cases F 2013 Electrochim. Acta 93 44Google Scholar

    [19]

    Sun H, Xie S, Li Y, Jiang Y, Sun X, Wang B, Peng H 2016 Adv. Mater. 28 8431Google Scholar

    [20]

    Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z 2017 Adv. Mater. 29 1606679Google Scholar

    [21]

    Zhang Z, Wang L, Li Y, Wang Y, Zhang J, Guan G, Pan Z, Zheng G, Peng H 2017 Adv. Energy Mater. 7 1601814Google Scholar

    [22]

    Wang C, Hu K, Li W, Wang H, Li H, Zou Y, Zhao C, Li Z, Yu M, Tan P, Li Z 2018 ACS Appl. Mater. Interfaces 10 34302Google Scholar

    [23]

    Jost K, Stenger D, Perez C R, McDonough J K, Lian K, Gogotsi Y, Dion G 2013 Energy Environ. Sci. 6 2698Google Scholar

    [24]

    Cao J, Li X, Wang Y, Walsh F C, Ouyang J, Jia D, Zhou Y 2015 J. Power Sources 293 657Google Scholar

    [25]

    Zhi M, Xiang C, Li J, Li M, Wu N 2013 Nanoscale 5 72Google Scholar

    [26]

    Gao Y P, Huang K J 2017 Chem. Asian J. 12 1969Google Scholar

    [27]

    Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, Zhang J, Chen Y 2015 Chem. Soc. Rev. 44 647Google Scholar

    [28]

    Zeng W, Zhang G, Wu X, Zhang K, Zhang H, Hou S, Li C, Wang T, Duan H 2015 J. Mater. Chem. A 3 24033Google Scholar

    [29]

    Huang Y, Huang Y, Meng W, Zhu M, Xue H, Lee C, Zhi C 2015 ACS Appl. Mater. Interfaces 7 2569Google Scholar

    [30]

    Gong W, Fugetsu B, Wang Z, Sakata I, Su L, Zhang X, Ogata H, Li M, Wang C, Li J, Ortiz Medina J, Terrones M, Endo M 2018 Comm. Chem. 1 16 Google Scholar

    [31]

    Nie W, Liu L, Li Q, Zhang S, Hu J, Yang X, Ding X 2019 RSC Adv. 9 19180Google Scholar

    [32]

    Xinping H, Bo G, Guibao W, Jiatong W, Chun Z 2013 Electrochim. Acta 111 210Google Scholar

    [33]

    Liu X, Wu Z, Yin Y 2017 Chem. Eng. J. 323 330Google Scholar

    [34]

    Wang X, Yan C, Yan J, Sumboja A, Lee P S 2015 Nano Energy 11 765Google Scholar

    [35]

    Lamberti A, Clerici F, Fontana M, Scaltrito L 2016 Adv. Energy Mater. 6 1600050Google Scholar

    [36]

    Qi R, Nie J, Liu M, Xia M, Lu X 2018 Nanoscale 10 7719Google Scholar

    [37]

    Yue B, Wang C, Ding X, Wallace G G 2012 Electrochim. Acta 68 18Google Scholar

    [38]

    Ding Y, Xu W, Wang W, Fong H, Zhu Z 2017 ACS Appl. Mater. Interfaces 9 30014Google Scholar

    [39]

    He Z, Zhou G, Byun J H, Lee S K, Um M K, Park B, Kim T, Lee S B, Chou T W 2019 Nanoscale 11 5884Google Scholar

    [40]

    Souri H, Bhattacharyya D 2018 ACS Appl. Mater. Interfaces 10 20845Google Scholar

    [41]

    Chu X, Zhang H, Su H, Liu F, Gu B, Huang H, Zhang H, Deng W, Zheng X, Yang W 2018 Chem. Eng. J. 349 168Google Scholar

    [42]

    Shang Y, Wang C, He X, Li J, Peng Q, Shi E, Wang R, Du S, Cao A, Li Y 2015 Nano Energy 12 401Google Scholar

    [43]

    Chen C, Cao J, Wang X, Lu Q, Han M, Wang Q, Dai H, Niu Z, Chen J, Xie S 2017 Nano Energy 42 187Google Scholar

    [44]

    Pu J, Wang X, Xu R, Komvopoulos K 2016 ACS Nano 10 9306Google Scholar

    [45]

    He S, Qiu L, Wang L, Cao J, Xie S, Gao Q, Zhang Z, Zhang J, Wang B, Peng H 2016 J. Mater. Chem. A 4 14968Google Scholar

    [46]

    Huang Y, Tao J, Meng W, Zhu M, Huang Y, Fu Y, Gao Y, Zhi C 2015 Nano Energy 11 518Google Scholar

    [47]

    Lv J, Jeerapan I, Tehrani F, Yin L, Silva-Lopez C A, Jang J H, Joshuia D, Shah R, Liang Y, Xie L, Soto F, Chen C, Karshalev E, Kong C, Yang Z, Wang J 2018 Energy Environ. Sci. 11 3431Google Scholar

    [48]

    Zhang Y, Wang S, Li X, Fan J A, Xu S, Song Y M, Choi K J, Yeo W H, Lee W, Nazaar S N, Lu B, Yin L, Hwang K C, Rogers J A, Huang Y 2014 Adv. Funct.Mater. 24 2028Google Scholar

    [49]

    Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y, Su J, Zhang H, Cheng H, Lu B, Yu C, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y, Paik U, Rogers J A 2013 Nat. Commun. 4 1543Google Scholar

    [50]

    Gilshteyn E P, Kallio T, Kanninen P, Fedorovskaya E O, Anisimov A S, Nasibulin A G 2016 RSC Adv. 6 93915Google Scholar

    [51]

    Gilshteyn E P, Amanbayev D, Anisimov A S, Kallio T, Nasibulin A G 2017 Sci. Rep. 7 17449Google Scholar

    [52]

    Yoon J, Lee J, Hur J 2018 Nanomaterials 8 541Google Scholar

    [53]

    Zhu Y, Li N, Lv T, Yao Y, Peng H, Shi J, Cao S, Chen T 2018 J. Mater. Chem. A 6 941Google Scholar

    [54]

    Lee J H, Jeong Y R, Lee G, Jin S W, Lee Y H, Hong S Y, Park H, Kim J W, Lee S S, Ha J S 2018 ACS Appl. Mater. Interfaces 10 28027Google Scholar

    [55]

    Yang Z, Deng J, Chen X, Ren J, Peng H 2013 Angew. Chem. Int. Ed. 52 13453Google Scholar

    [56]

    Wang X, Yang C, Jin J, Li X, Cheng Q, Wang G 2018 J. Mater. Chem. A 6 4432Google Scholar

    [57]

    Li L, Lou Z, Han W, Chen D, Jiang K, Shen G 2017 Adv. Mater. Tech. 2 1600282Google Scholar

    [58]

    Shi M, Yang C, Song X, Liu J, Zhao L, Zhang P, Gao L 2017 Chem. Eng. J. 322 538Google Scholar

    [59]

    Lee Y, Chae S, Park H, Kim J, Jeong S H 2020 Chem. Eng. J. 382 122798Google Scholar

    [60]

    Li K, Huang Y, Liu J, Sarfraz M, Agboola P O, Shakir I, Xu Y 2018 J. Mater. Chem. A 6 1802Google Scholar

    [61]

    Huang Y, Hu H, Huang Y, Zhu M, Meng W, Liu C, Pei Z, Hao C, Wang Z, Zhi C 2015 ACS Nano 9 4766Google Scholar

    [62]

    Gu T, Wei B 2016 J. Mater. Chem. A 4 12289Google Scholar

    [63]

    Jost K, Dion G, Gogotsi Y 2014 J. Mater. Chem. A 2 10776Google Scholar

    [64]

    Guo K, Wang X, Hu L, Zhai T, Li H, Yu N 2018 ACS Appl. Mater. Interfaces 10 19820Google Scholar

    [65]

    Yu J, Lu W, Smith J P, Booksh K S, Meng L, Huang Y, Li Q, Byun J H, Oh Y, Yan Y, Chou T W 2017 Adv. Energy Mater. 7 1600976Google Scholar

    [66]

    Zhang Y, Bai W, Cheng X, Ren J, Weng W, Chen P, Fang X, Zhang Z, Peng H 2014 Angew. Chem. Int. Ed. 53 14564Google Scholar

    [67]

    Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G 2015 ACS Appl. Mater. Interfaces 7 15303Google Scholar

    [68]

    Xie Y, Liu Y, Zhao Y, Tsang Y H, Lau S P, Huang H, Chai Y 2014 J. Mater. Chem. A 2 9142Google Scholar

    [69]

    Liu L, Tian Q, Yao W, Li M, Li Y, Wu W 2018 J. Power Sources 397 59Google Scholar

    [70]

    Yun T G, Hwang B, Kim D, Hyun S, Han S M 2015 ACS Appl. Mater. Interfaces 7 9228Google Scholar

    [71]

    Dong K, Wang Y C, Deng J, Dai Y, Zhang S L, Zou H, Gu B, Sun B, Wang Z L 2017 ACS Nano 11 9490Google Scholar

    [72]

    Hu L, Pasta M, Mantia F L, Cui L, Jeong S, Deshazer H D, Choi J W, Han S M, Cui Y 2010 Nano Lett. 10 708Google Scholar

    [73]

    Park H, Kim J W, Hong S Y, Lee G, Lee H, Song C, Keum K, Jeong Y R, Jin S W, Kim D S, Ha J S 2019 ACS Nano 13 10469Google Scholar

    [74]

    Yun J, Song C, Lee H, Park H, Jeong Y R, Kim J W, Jin S W, Oh S Y, Sun L, Zi G, Ha J S 2018 Nano Energy 49 644Google Scholar

    [75]

    Kim D, Shin G, Kang Y, Kim W, Ha J 2013 ACS Nano 7 7975Google Scholar

    [76]

    Lv Z, Tang Y, Zhu Z, Wei J, Li W, Xia H, Jiang Y, Liu Z, Luo Y, Ge X, Zhang Y, Wang R, Zhang W, Loh X J, Chen X 2018 Adv. Mater. 30 e1805468Google Scholar

    [77]

    Guo F M, Xu R Q, Cui X, Zhang L, Wang K L, Yao Y W, Wei J Q 2016 J. Mater. Chem. A 4 9311Google Scholar

    [78]

    Lv Z, Luo Y, Tang Y, Wei J, Zhu Z, Zhou X, Li W, Zeng Y, Zhang W, Zhang Y, Qi D, Pan S, Loh X J, Chen X 2018 Adv. Mater. 30 1704531Google Scholar

    [79]

    Ren D, Dong L, Wang J, Ma X, Xu C, Kang F 2018 Chem. Select. 3 4179Google Scholar

    [80]

    Ren J, Ren R P, Lv Y K 2018 Chem. Eng. J. 349 111Google Scholar

    [81]

    Shao G, Yu R, Zhang X, Chen X, He F, Zhao X, Chen N, Ye M, Liu X 2020 Adv. Funct. Mater. 2003151

    [82]

    Chen X, Lin H, Chen P, Guan G, Deng J, Peng H 2014 Adv. Mater. 26 4444Google Scholar

    [83]

    Zhang N, Zhou W, Zhang Q, Luan P, Cai L, Yang F, Zhang X, Fan Q, Zhou W, Xiao Z, Gu X, Chen H, Li K, Xiao S, Wang Y, Liu H, Xie S 2015 Nanoscale 7 12492Google Scholar

    [84]

    Chen Y, Xu B, Wen J, Gong J, Hua T, Kan C W, Deng J 2018 Small 14 e1704373Google Scholar

    [85]

    Zhang N, Luan P, Zhou W, Zhang Q, Cai L, Zhang X, Zhou W, Fan Q, Yang F, Zhao D, Wang Y, Xie S 2014 Nano Res. 7 1680Google Scholar

    [86]

    Li H, Ding Y, Ha H, Shi Y, Peng L, Zhang X, Ellison C J, Yu G 2017 Adv. Mater. 29 1700898Google Scholar

    [87]

    Moon H, Lee H, Kwon J, Suh Y D, Kim D K, Ha I, Yeo J, Hong S, Ko S H 2017 Sci. Rep. 7 41981Google Scholar

    [88]

    Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H 2016 Nano Energy 27 230Google Scholar

    [89]

    Zhou G, Kim N R, Chun S E, Lee W, Um M K, Chou T W, Islam M F, Byun J H, Oh Y 2018 Carbon 130 137Google Scholar

    [90]

    Wang S, Liu N, Su J, Li L, Long F, Zou Z, Jiang X, Gao Y 2017 ACS Nano 11 2066Google Scholar

    [91]

    Choi C, Lee J M, Kim S H, Kim S J, Di J, Baughman R H 2016 Nano Lett. 16 7677Google Scholar

    [92]

    Kim K J, Lee J A, Lima M D, Baughman R H, Kim S J 2016 RSC Adv. 6 24756Google Scholar

    [93]

    Wang Z, Cheng J, Guan Q, Huang H, Li Y, Zhou J, Ni W, Wang B, He S, Peng H 2018 Nano Energy 45 210Google Scholar

    [94]

    Xu J, Ding J, Zhou X, Zhang Y, Zhu W, Liu Z, Ge S, Yuan N, Fang S, Baughman R H 2017 J. Power Sources 340 302Google Scholar

    [95]

    Zhang Q, Sun J, Pan Z, Zhang J, Zhao J, Wang X, Zhang C, Yao Y, Lu W, Li Q, Zhang Y, Zhang Z 2017 Nano Energy 39 219Google Scholar

    [96]

    Choi C, Kim J H, Sim H J, Di J, Baughman R H, Kim S J 2016 Adv. Energy Mater. 7 1602021Google Scholar

    [97]

    Zang X, Zhu M, Li X, Li X, Zhen Z, Lao J, Wang K, Kang F, Wei B, Zhu H 2015 Nano Energy 15 83Google Scholar

    [98]

    Yu C, Masarapu C, Rong J, Wei B, Jiang H 2009 Adv. Mater. 21 4793Google Scholar

    [99]

    Chen C, Qin H, Cong H, Yu S 2019 Adv. Mater. 31 1900573Google Scholar

    [100]

    Zheng X, Zhou X, Xu J, Zou L, Nie W, Hu X, Dai S, Qiu Y, Yuan N 2020 J. Mater. Sci. 55 8251Google Scholar

    [101]

    Li X, Gu T, Wei B 2012 Nano Lett. 12 6366Google Scholar

    [102]

    Zang J, Cao C, Feng Y, Liu J, Zhao X 2014 Sci. Rep. 4 6492Google Scholar

    [103]

    Zhao C, Jia X, Shu K, Yu C, Min Y, Wang C 2020 Electrochim. Acta 343 136099Google Scholar

    [104]

    Jeong H 2020 Carbon Lett. 30 55Google Scholar

    [105]

    Zhao C, Wang C, Yue Z, Shu K, Wallace G G 2013 ACS Appl. Mater. Interfaces 5 9008Google Scholar

    [106]

    Chen T, Peng H, Durstock M, Dai L 2014 Sci. Rep. 4 3612Google Scholar

    [107]

    Hong S, Yoon J, Jin S, Lim Y, Lee S, Zi G, Ha J 2014 ACS Nano 8 8844Google Scholar

    [108]

    Park S, Thangavel G, Parida K, Li S, Lee P 2019 Adv. Mater. 31 1805536Google Scholar

    [109]

    Qi D, Liu Z, Liu Y, Leow W, Zhu B, Yang H, Yu J, Wang W, Wang H, Yin S, Chen X 2015 Adv. Mater. 27 5559Google Scholar

    [110]

    Lee J, Kim W, Kim W 2014 ACS Appl. Mater. Interfaces 6 13578Google Scholar

    [111]

    Fu X, Li Z, Xu L, Liao M, Sun H, Xie S, Sun X, Wang B, Peng H 2019 Sci. China Mater. 62 955Google Scholar

    [112]

    Luan P, Zhang N, Zhou W, Niu Z, Zhang Q, Cai L, Zhang X, Yang F, Fan Q, Zhou W, Xiao Z, Gu X, Chen H, Li K, Xiao S, Wang Y, Liu H, Xie S 2016 Adv. Funct. Mater. 26 8178Google Scholar

    [113]

    Lee H, Hong S, Lee J, Suh Y D, Kwon J, Moon H, Kim H, Yeo J, Ko S H 2016 ACS Appl. Mater. Interfaces 8 15449Google Scholar

    [114]

    Yun T, Park M, Kim D, Kim D, Cheong J, Bae J, Han S, Kim D 2019 ACS Nano 13 3141Google Scholar

    [115]

    Fu Y, Wu H, Ye S, Cai X, Yu X, Hou S, Kafafy H, Zou D 2013 Energy Environ. Sci. 6 805Google Scholar

    [116]

    Liao M, Ye L, Zhang Y, Chen T, Peng H 2019 Adv. Electron. Mater. 5 1800456Google Scholar

    [117]

    Sun H, Zhang Y, Zhang J, Sun X, Peng H 2017 Nat. Rev. Mater. 2 17023Google Scholar

    [118]

    Zhang Y, Zhao Y, Ren J, Weng W, Peng H 2016 Adv. Mater. 28 4524Google Scholar

    [119]

    Hong Y, Cheng X, Liu G, Hong D, He S, Wang B, Sun X, Peng H 2019 Chin. J. Polym. Sci. 37 737Google Scholar

    [120]

    Xu P, Kang J, Choi J, Suhr J, Yu J, Li F, Byun J, Kim B, Chou T 2014 ACS Nano 8 9437Google Scholar

    [121]

    Hao G, Hippauf F, Oschatz M, Wisser F, Leifert A, Nickel W, Noroega N, Zheng Z, Kaskel S 2014 ACS Nano 8 7138Google Scholar

    [122]

    Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C 2015 Nat. Commun. 6 10310Google Scholar

    [123]

    Zhao Y, Chen S, Hu J, Yu J, Feng G, Yang B, Li C, Zhao N, Zhu C, Xu J 2018 ACS Appl. Mater. Interfaces 10 19323Google Scholar

    [124]

    Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G 2018 Adv. Mater. 30 e1800124Google Scholar

    [125]

    Guo Y, Zheng K, Wan P 2018 Small 14 e1704497Google Scholar

    [126]

    Wang Y, Chen F, Liu Z, Tang Z, Yang Q, Zhao Y, Du S, Chen Q, Zhi C 2019 Angew. Chem. Int. Ed. 58 15707Google Scholar

    [127]

    Textile Standards, ASTM International https://www.astm.org/Standards/textile-standards.html [2020-6-30]

    [128]

    Vlad A, Singh N, Galande C, Ajayan P M 2015 Adv. Energy Mater. 5 1402115Google Scholar

  • 图 1  充放电原理示意图 (a) 双电层电容器; (b) 赝电容电容器; (c) 混合型电容器. (d) 超级电容器的结构示意图

    Fig. 1.  Schematic illustrations of energy storage mechanisms of (a) electric double-layer capacitor, (b) pseudocapacitor, (c) hybrid capacitor. (d) Structure diagram of supercapacitor.

    图 2  可拉伸超级电容器的设计思路: 弹性聚合物、可拉伸结构以及两者的结合

    Fig. 2.  Design ideas of stretchable supercapacitor: Elastic polymer, stretchable structure, and elastic polymer + stretchable structure.

    图 3  弹性聚合物为基底材料制备的可拉伸电极/器件 (a), (b) PDMS基底[36,50]; (c) Ecoflex基底[52]; (d) PU基底[21]; (e) 弹性纤维基底[55]

    Fig. 3.  Stretchable electrodes/supercapacitors based on elastic polymer: (a), (b) PDMS[36,50]; (c) Ecoflex[52]; (d) PU[21]; (e) elastic fiber[55].

    图 4  可拉伸结构设计制得的电极/器件 (a) 螺旋结构[66]; (b) 波浪结构[68]; (c) 织物结构[71]; (d) 蛇形结构[75]; (e)−(g) 网状结构[45,76,78]

    Fig. 4.  Stretchable supercapacitors based on stretchable structure: (a) Helical structure[66]; (b) wave structure[68]; (c) fabric structure[71]; (d) serpentine structure[75]; (e)−(g) net structure[45,76,78].

    图 5  织物结构可拉伸超级电容器 (a)织物结构可拉伸超级电容器示意图; (b)可拉伸织物结构示意图; (c)不可拉伸织物结构示意图; (d)可拉伸织物结构实物图; (e)不同应变(10%, 20%和30%)和8 A/g电流密度情况下, 不同拉伸/释放循环次数后的电容量保持率(插图为拉伸循环期间可拉伸超级电容器的实物图); (f)在肘部放置可拉伸超级电容器的示意图; 两个放置于肘部并串联的可拉伸超级电容器用于点亮肘部的LED灯泡的实物图: (g)胳膊拉伸和(h)胳膊弯曲; (i)两个串联的器件可以点亮40个组装成“DHU”字母的LED灯泡[81]

    Fig. 5.  Schematic illustrations of stretchable supercapacitors: (a) Fabric structure stretchable supercapacitors; (b) stretchable fabric structure; (c) non-stretchable fabric structure; (d) image of stretchable fabric structure; (e) capacity retention after different numbers of stretch/release cycles under different strains (10%, 20%, and 30%) at a current density of 8 A/g (the inset presents the images of the hybrid supercapacitor device during stretching cycles); (f) schematic of elbow-fitted supercapacitor; images of two supercapacitors connected in series for the illumination of an elbow-fitted LED for (g) stretching and (h) bending. (i) Two devices connected in series for the illumination of a set of 40 LEDs with a parallel "DHU" pattern[81].

    图 6  织物结构可拉伸超级电容器与文献中报道的超级电容器在拉伸恢复率、拉伸循环稳定性和电化学性能等方面的比较, 其中C0和C分别对应于拉伸循环前后的比容量

    Fig. 6.  Comparison of the stretchable supercapacitor with reported supercapacitors with respect to the tensile recovery, stretching cyclic stability, and electrochemical properties, where C0 and C correspond to the specific capacities before and after stretching cycles, respectively.

    图 7  弹性聚合物和可拉伸结构组合制备的可拉伸复合电极/器件 (a), (b) 弹性聚合物和波浪结构[57,92]; (c) 弹性聚合物和螺旋结构[94]; (d) 弹性聚合物和织物结构[97]; (e) 弹性聚合物和网状结构[59]

    Fig. 7.  Stretchable supercapacitors based on elastic polymer and stretchable structure: (a), (b) Elastic polymer and wave structure[57,92]; (c) elastic polymer and helical structure[94]; (d) elastic polymer and fabric structure[97]; (e) elastic polymer and net structure[59].

    图 8  可拉伸超级电容器的多功能性 (a) 自供电[47]; (b) 传感[73]; (c), (d)透明[87,120]

    Fig. 8.  Multifunction stretchable supercapacitors: (a) Self-powered[47]; (b) sensing[73]; (c), (d) transparent[87,120].

    图 9  可拉伸超级电容器的多功能性 (a)−(e) 超薄[112]; (f) 自愈合[90]

    Fig. 9.  Multifunction stretchable supercapacitors: (a)−(e) ultrathin[112]; (f) self-healing[90].

    图 10  高弹性凝胶电解质 (a), (b) 琼脂/HPAAm双网络水凝胶[126]; (c) H3PO4-聚乙烯醇(PVA)聚合物凝胶电解质[105]

    Fig. 10.  (a) Illustration of the preparation of Agar/HPAAm double-net hydrogel; (b) the recovery performance of Agar/HPAAm hydrogel and Agar/PAAm hydrogel under different stretching conditions[126]; (c) schematic configuration of the intrinsically stretcha-ble supercapacitor using highly stretchable gel electrolyte[105].

    表 1  利用弹性聚合物为基底制备可拉伸超级电容器的研究概括

    Table 1.  Summary of recent studies on stretchable supercapacitor based on elastic polymer.

    导电处理活性材料沉积方法电容表现极限拉伸率/%电容稳定性文献
    PDMS基底材料的可拉伸超级电容器
    石墨烯石墨烯激光诱发650 μF/cm2
    @35 μA/cm2
    501000次拉伸循环后
    保持84%电容
    [35]
    碳纳米管V2O5/PEDOT旋涂135 mF/cm2
    @0.5 mA/cm2
    50100次拉伸循环后
    保持85%电容
    [36]
    单壁碳纳米管单壁碳纳米管化学汽相淀积17.5 F/g1201000次拉伸循环后
    电容没有变化
    [50]
    单壁碳纳米管单壁碳纳米管/
    氮化硼纳米管
    干压7.7 F/g
    @19 μF/cm2
    5050%应变下1000次
    拉伸循环后
    电容增加25%
    [51]
    PU基底材料的可拉伸超级电容器
    聚吡咯聚吡咯化学聚合108.5 F/g@1 A/g100100%应变下拉伸1000次后保持90%电容[37]
    氮-碳纳米管氮-碳纳米管化学气相沉积37.6 mF/cm2
    @0.05 mA/cm2
    5001000次拉伸后保持96%电容[21]
    Ecoflex基底材料的可拉伸超级电容器
    碳纳米管单壁碳纳米管涂覆15.2 F/cm3
    @0.021 A/cm3
    60在0, 20%, 40%应变下, 1000次充放电循环后电容保持97.4%, 95.5%, 94.5%[52]
    PEDOT:PSS基底材料的可拉伸超级电容器
    银掺杂PEDOT:PSS/碳纳米管浸渍烘干64 mF/cm2 (85.3 F/g)480400%应变下100次拉伸循环后保持90%电容[53]
    多壁碳纳米管多米碳纳米管@聚苯胺电聚合2.2 F/cm3 @1 mA/cm25050%应变下300次拉伸循环后CV曲线没有明显变化[54]
    下载: 导出CSV

    表 2  通过可拉伸结构设计制备可拉伸超级电容器的研究概括

    Table 2.  Summary of recent studies on stretchable supercapacitors based on stretchable structure.

    导电处理活性材料沉积方法电容表现极限拉伸率/%电容稳定性文献
    螺旋结构设计的可拉伸超级电容器
    不锈钢弹簧碳纳米管/聚苯胺原位合成277.8 F/g@1 A/g, 402.8 mF/cm @1 mA/cm100在100%应变下电容没有
    明显降低
    [41]
    碳纳米管纱线聚吡咯/碳纳米管电沉积63.6 F/g@1 A/g150[42]
    不锈钢线MnO2/还原氧化石墨烯电沉积2.86 mWh/cm3400400%应变下拉伸循环3000次后保持95%电容[64]
    碳纳米管纱线碳纳米管纱线/MnO2/聚吡咯电沉积60.43 mF/cm2, 7.72 F/g, 9.46 F/cm3, 9.86 mF/cm@10 mV/s2020%应变下拉伸循环200次后保持88%电容[65]
    碳纳米管纤维碳纳米管纺丝0.51 mF/cm, 27.07 mF/cm2
    @150 mA/cm3
    300拉伸循环300次后保持94%电容[66]
    波浪结构设计的可拉伸超级电容器
    碳纳米管碳纳米管@MnO2/碳纳米管@聚吡咯电沉积2.2 F/cm3
    @2 mA/cm2
    100拉伸循环500次后保持96%电容[67]
    泡沫镍聚苯胺/石墨烯电聚合261 F/g3030%应变下拉伸循环100次后保持95%电容[68]
    织物结构设计的可拉伸超级电容器
    银涂层聚吡咯@MnO2丝网印刷0.0337 mWh/cm2, 95.3 mF/cm2@5 mV/s4040%应变下保持
    86.2%电容
    [69]
    不锈钢网聚吡咯电化学沉积170 F/g@0.5 A/g2020%应变下拉伸循环10000次后保持87%电容[46]
    碳纳米管 织物聚吡咯@MnO2电镀461 F/g@0.2 A/g2121%应变下保持98.5%电容[70]
    碳纤维PEDOT:PSS/碳浸渍涂覆100100%应变下拉伸循环6000次后保持70%电容[71]
    导电过滤网聚吡咯@MnO2电沉积20[29]
    银镀层MnO2–碳纳米管/PEDOT:PSS丝网印刷17.5 mWh/cm2
    @0.4 mW/cm2
    2020%应变下拉伸循环100次后保持95.26%电容[47]
    单壁碳纳米管单壁碳纳米管浸渍烘干140 F/g, 0.48 F/cm2@20 μA/cm2120拉伸后比电容没有变化[72]
    多壁碳纳米管多壁碳纳米管/MoO3喷涂48.3 F/g@0.14 A/g, 33.8 mF/cm2 @0.1 mA/cm50应变从10%增加到50%,
    拉伸循环5000次后
    保持80%电容
    [73]
    蛇形结构设计的可拉伸超级电容器
    钛/铂聚吡咯-多壁碳纳米管喷涂5.17 mF/cm2
    @100 μA/cm2
    3030%应变下双轴拉伸循环1000次后充放电行为没有发生明显变化[74]
    单壁碳纳米管单壁碳纳米管喷涂100 μF@0.5 V/s3030%应变下拉伸循环10次后电容没有明显恶化[75]
    网状结构设计的可拉伸超级电容器
    单壁碳纳米管膜单壁碳纳米管喷涂1.6 F/cm3, 448 nF/cm2 @1 V/s150150%应变下电容保持不变[44]
    碳纳米管膜聚吡咯/黑磷/碳纳米管电沉积7.35 F/cm2
    @7.8 mA/cm2
    20002000%应变下拉伸循环10000次后保持95%电容[76]
    碳纳米管碳纳米管/聚吡咯电沉积69 F/g, 3.5 mF/cm, 74.1 mF/cm2, 9.9 F/cm3 @2 mV/s105%应变下拉伸循环5000次后有101%动态电容[77]
    碳纳米管膜碳纳米管化学气
    相沉积
    61.4 mF/cm2, 35.7 F/g 16.0 F/cm3@1 mA/cm21616%应变下拉伸循环3000次后保持93.3%电容[45]
    碳纳米管MnO2/碳纳米管水热合成法227.2 mF/cm2500400%应变下拉伸循环10000次后保持98%电容[78]
    下载: 导出CSV

    表 3  弹性聚合物与可拉伸结构结合的复合电极制备可拉伸超级电容器研究概括

    Table 3.  Summary of recent studies on stretchable supercapacitors based on elastic polymer + stretchable structure.

    基底材料结构类型导电处理活性材料沉积方法电容表现拉伸率/%电容稳定性 文献
    PDMS波浪结构多壁碳纳米管多壁碳纳米管/聚苯胺3D打印44.13 mF/cm2@
    0.2 mA/cm2
    40在5%-40%不同应变情况下, 电化学性能几乎没有变化[57]
    PDMS波浪结构3D-石墨烯3D-石墨烯/聚苯胺原位聚合77.8 Wh/kg
    @995 W/kg
    100100%应变下拉伸循环100次后保持91.2%电容[60]
    PDMS波浪结构碳纳米管聚苯胺/碳纳米管涂覆308.4 F/g@8 A/g100100%应变下拉伸循环200次后电容保持不变[82]
    PDMS波浪结构单壁碳纳米管/PEDOT 混合纤维单壁碳纳米管/PEDOT电沉积53 F/g, 1.6 mF/cm2@1 A/g100X和Y两个方向, 100%应变下拉伸循环5000次后保持96.9% 和 90.1%电容[83]
    PDMS波浪结构碳纳米管膜MnO2/碳纳米管, Fe2O3/碳纳米管水热反应45.8 Wh/kg100在多种应变下电化学循环10000次后保持98.9%电容[62]
    PDMS波浪结构不锈钢线Ni-Co-S/还原氧化石墨烯电沉积127.2 mF/cm2
    @0.1 mA/cm
    100100%应变下拉伸循环1000次后保持91%电容[84]
    PDMS波浪结构单壁碳纳米管/聚苯胺混合膜单壁碳纳米管/聚苯胺化学气
    相沉积
    106 F/g@1 A/g120拉伸循环200次后保持85%电容[85]
    PDMS网状结构还原氧化
    石墨烯
    还原氧化石墨烯浸渍烘干188 mAh/g
    @0.05 A/g
    5050%应变下拉伸循环100次后保持89%电容[86]
    PDMS网状结构金-聚甲基丙烯酸甲酯PMMA 纳米纤维网MnO2电沉积3.68 mF/cm2
    @0.007 mA/cm2
    6060%应变下保持92%电容[59]
    PDMS网状结构银/金核壳
    纳米线
    聚吡咯电化学沉积580 μF/cm2
    @5.8 μA/cm2
    50应变从10%增加到50%, CV曲线几乎没有变化[87]
    PDMS网状结构泡沫石墨烯聚吡咯/
    石墨烯
    化学气相沉积和化学界面聚合258 mF/cm2
    @1 mA/cm2
    5030%应变下充放电循环100次后保持88%电容[80]
    PU螺旋结构镀银碳纳米管浸渍涂覆4.17 mWh/cm3150重复拉伸变形后电容没有明显下降[58]
    PU螺旋结构碳纳米管聚吡咯/碳纳米管电沉积69 mF/cm2130应变从0%增加到40%, 拉伸循环1000次后保持85%电容[88]
    PU螺旋结构纳米碳N-石墨烯/3D镍钴铝原位聚合1.1 mWh/cm2
    @2.59 mW/cm2
    10050%应变下拉伸循环10000次后保持91%电容[89]
    PU螺旋结构还原氧化石墨烯纤维聚吡咯/还原氧化石墨烯/多壁碳
    纳米管
    0.94 mWh/cm3100100%应变下保持82.4%电容[90]
    Ecoflex
    橡胶芯
    螺旋结构碳纳米管MnO2/PEDOT@碳
    纳米管
    电沉积2.38 mF/cm, 11.88 mF/cm2200在拉伸循环和扭曲循环后电容分别保持92.8%和98.2%[91]
    Ecoflex波浪结构泡沫镍聚苯胺/
    石墨烯
    电沉积261 F/g@0.38 A/g3030%应变下拉伸循环100次后保持95%电容[68]
    Ecoflex 橡胶波浪结构碳纳米管PEDOT/碳纳米管气相聚合82 F/g, 11 mF/cm2
    @10 mV/s
    600600%双向拉伸应变下保持94%电容[92]
    PEDOT:PSS螺旋结构PEDOT-S:PSSPEDOT-S:PSS湿法纺丝93.1 mF/cm2
    @50 μA/cm2
    400400%应变下保持80%电容[93]
    弹性橡胶
    纤维
    螺旋结构金@碳纳米管聚苯胺/碳纳米管电沉积6 F/cm3@70 A/cm3400应变从0%增加到400%保持96%电容[94]
    弹性纤维螺旋结构碳纳米管纤维MnO2@PEDOT:PSS@碳纳米管涂覆和
    电沉积
    278.6 mF/cm2100100%应变下拉伸循环3000次后保持92%电容[95]
    弹性纤维螺旋结构碳纳米管碳纳米管包裹0.515 Wh/kg@
    0.05 A/g
    10075%应变下拉伸循环100次后保持95%电容[55]
    橡胶纤维螺旋结构碳纳米管片MnO2/碳纳米管包裹4.8 mF/cm, 22.8 mF/cm240—800600%应变下保持92.6%电容[96]
    聚合物基底波浪结构石墨烯机织布聚苯胺/
    石墨烯
    原位电沉积17 μF/cm2
    @0.06 V/s
    30拉伸循环100次后CV 曲线略有下降(应变速率 60%/s)[97]
    橡皮筋波浪结构碳纳米管膜碳纳米管/
    聚苯胺
    电沉积394 F/g@2 mV/s100100%应变下拉伸循环100次后保持98%电容[79]
    下载: 导出CSV
    Baidu
  • [1]

    Wang X, Liu Z, Zhang T 2017 Small 13 1602790Google Scholar

    [2]

    Heo J S, Eom J, Kim Y H, Park S K 2018 Small 14 1703034Google Scholar

    [3]

    Weng W, Chen P, He S, Sun X, Peng H 2016 Angew. Chem. Int. Ed. 55 6140Google Scholar

    [4]

    Wu X, Peng H 2019 Sci. Bull. 64 634Google Scholar

    [5]

    Jung S, Lee J, Hyeon T, Lee M, Kim D H 2014 Adv. Mater. 26 6329Google Scholar

    [6]

    Zhai S, Karahan H E, Wei L, Qian Q, Harris A T, Minett A I, Ramakrishna S, Ng A K, Chen Y 2016 Energy Storage Mater. 3 123Google Scholar

    [7]

    Chen X, Villa N S, Zhuang Y, Chen L, Wang T, Li Z, Kong T 2019 Adv. Energy Mater. 10 1902769Google Scholar

    [8]

    Huang Y, Zhi C 2017 J. Phys. D: Appl. Phys. 50 273001Google Scholar

    [9]

    Wang Y, Ding Y, Guo X, Yu G 2019 Nano Res. 12 1978Google Scholar

    [10]

    Shao Y, El Kady M F, Sun J, Li Y, Zhang Q, Zhu M, Wang H, Dunn B, Kaner R B 2018 Chem. Rev. 118 9233Google Scholar

    [11]

    Wang K, Wu H, Meng Y, Wei Z 2014 Small 10 14Google Scholar

    [12]

    Wang Y, Song Y, Xia Y 2016 Chem. Soc. Rev. 45 5925Google Scholar

    [13]

    Lu X, Yu M, Wang G, Tong Y, Li Y 2014 Energy Environ. Sci. 7 2160Google Scholar

    [14]

    Liu J, Wang J, Xu C, Jiang H, Li C, Zhang L, Lin J, Shen Z X 2018 Adv. Sci. 5 1700322Google Scholar

    [15]

    An T, Cheng W 2018 J. Mater. Chem. A 6 15478Google Scholar

    [16]

    Wen L, Li F, Cheng H M 2016 Adv. Mater. 28 4306Google Scholar

    [17]

    Liu L, Yu Y, Yan C, Li K, Zheng Z 2015 Nat. Commun. 6 7260Google Scholar

    [18]

    Molina J, Fernández J, Inés J C, del Río A I, Bonastre J, Cases F 2013 Electrochim. Acta 93 44Google Scholar

    [19]

    Sun H, Xie S, Li Y, Jiang Y, Sun X, Wang B, Peng H 2016 Adv. Mater. 28 8431Google Scholar

    [20]

    Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z 2017 Adv. Mater. 29 1606679Google Scholar

    [21]

    Zhang Z, Wang L, Li Y, Wang Y, Zhang J, Guan G, Pan Z, Zheng G, Peng H 2017 Adv. Energy Mater. 7 1601814Google Scholar

    [22]

    Wang C, Hu K, Li W, Wang H, Li H, Zou Y, Zhao C, Li Z, Yu M, Tan P, Li Z 2018 ACS Appl. Mater. Interfaces 10 34302Google Scholar

    [23]

    Jost K, Stenger D, Perez C R, McDonough J K, Lian K, Gogotsi Y, Dion G 2013 Energy Environ. Sci. 6 2698Google Scholar

    [24]

    Cao J, Li X, Wang Y, Walsh F C, Ouyang J, Jia D, Zhou Y 2015 J. Power Sources 293 657Google Scholar

    [25]

    Zhi M, Xiang C, Li J, Li M, Wu N 2013 Nanoscale 5 72Google Scholar

    [26]

    Gao Y P, Huang K J 2017 Chem. Asian J. 12 1969Google Scholar

    [27]

    Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, Zhang J, Chen Y 2015 Chem. Soc. Rev. 44 647Google Scholar

    [28]

    Zeng W, Zhang G, Wu X, Zhang K, Zhang H, Hou S, Li C, Wang T, Duan H 2015 J. Mater. Chem. A 3 24033Google Scholar

    [29]

    Huang Y, Huang Y, Meng W, Zhu M, Xue H, Lee C, Zhi C 2015 ACS Appl. Mater. Interfaces 7 2569Google Scholar

    [30]

    Gong W, Fugetsu B, Wang Z, Sakata I, Su L, Zhang X, Ogata H, Li M, Wang C, Li J, Ortiz Medina J, Terrones M, Endo M 2018 Comm. Chem. 1 16 Google Scholar

    [31]

    Nie W, Liu L, Li Q, Zhang S, Hu J, Yang X, Ding X 2019 RSC Adv. 9 19180Google Scholar

    [32]

    Xinping H, Bo G, Guibao W, Jiatong W, Chun Z 2013 Electrochim. Acta 111 210Google Scholar

    [33]

    Liu X, Wu Z, Yin Y 2017 Chem. Eng. J. 323 330Google Scholar

    [34]

    Wang X, Yan C, Yan J, Sumboja A, Lee P S 2015 Nano Energy 11 765Google Scholar

    [35]

    Lamberti A, Clerici F, Fontana M, Scaltrito L 2016 Adv. Energy Mater. 6 1600050Google Scholar

    [36]

    Qi R, Nie J, Liu M, Xia M, Lu X 2018 Nanoscale 10 7719Google Scholar

    [37]

    Yue B, Wang C, Ding X, Wallace G G 2012 Electrochim. Acta 68 18Google Scholar

    [38]

    Ding Y, Xu W, Wang W, Fong H, Zhu Z 2017 ACS Appl. Mater. Interfaces 9 30014Google Scholar

    [39]

    He Z, Zhou G, Byun J H, Lee S K, Um M K, Park B, Kim T, Lee S B, Chou T W 2019 Nanoscale 11 5884Google Scholar

    [40]

    Souri H, Bhattacharyya D 2018 ACS Appl. Mater. Interfaces 10 20845Google Scholar

    [41]

    Chu X, Zhang H, Su H, Liu F, Gu B, Huang H, Zhang H, Deng W, Zheng X, Yang W 2018 Chem. Eng. J. 349 168Google Scholar

    [42]

    Shang Y, Wang C, He X, Li J, Peng Q, Shi E, Wang R, Du S, Cao A, Li Y 2015 Nano Energy 12 401Google Scholar

    [43]

    Chen C, Cao J, Wang X, Lu Q, Han M, Wang Q, Dai H, Niu Z, Chen J, Xie S 2017 Nano Energy 42 187Google Scholar

    [44]

    Pu J, Wang X, Xu R, Komvopoulos K 2016 ACS Nano 10 9306Google Scholar

    [45]

    He S, Qiu L, Wang L, Cao J, Xie S, Gao Q, Zhang Z, Zhang J, Wang B, Peng H 2016 J. Mater. Chem. A 4 14968Google Scholar

    [46]

    Huang Y, Tao J, Meng W, Zhu M, Huang Y, Fu Y, Gao Y, Zhi C 2015 Nano Energy 11 518Google Scholar

    [47]

    Lv J, Jeerapan I, Tehrani F, Yin L, Silva-Lopez C A, Jang J H, Joshuia D, Shah R, Liang Y, Xie L, Soto F, Chen C, Karshalev E, Kong C, Yang Z, Wang J 2018 Energy Environ. Sci. 11 3431Google Scholar

    [48]

    Zhang Y, Wang S, Li X, Fan J A, Xu S, Song Y M, Choi K J, Yeo W H, Lee W, Nazaar S N, Lu B, Yin L, Hwang K C, Rogers J A, Huang Y 2014 Adv. Funct.Mater. 24 2028Google Scholar

    [49]

    Xu S, Zhang Y, Cho J, Lee J, Huang X, Jia L, Fan J A, Su Y, Su J, Zhang H, Cheng H, Lu B, Yu C, Chuang C, Kim T I, Song T, Shigeta K, Kang S, Dagdeviren C, Petrov I, Braun P V, Huang Y, Paik U, Rogers J A 2013 Nat. Commun. 4 1543Google Scholar

    [50]

    Gilshteyn E P, Kallio T, Kanninen P, Fedorovskaya E O, Anisimov A S, Nasibulin A G 2016 RSC Adv. 6 93915Google Scholar

    [51]

    Gilshteyn E P, Amanbayev D, Anisimov A S, Kallio T, Nasibulin A G 2017 Sci. Rep. 7 17449Google Scholar

    [52]

    Yoon J, Lee J, Hur J 2018 Nanomaterials 8 541Google Scholar

    [53]

    Zhu Y, Li N, Lv T, Yao Y, Peng H, Shi J, Cao S, Chen T 2018 J. Mater. Chem. A 6 941Google Scholar

    [54]

    Lee J H, Jeong Y R, Lee G, Jin S W, Lee Y H, Hong S Y, Park H, Kim J W, Lee S S, Ha J S 2018 ACS Appl. Mater. Interfaces 10 28027Google Scholar

    [55]

    Yang Z, Deng J, Chen X, Ren J, Peng H 2013 Angew. Chem. Int. Ed. 52 13453Google Scholar

    [56]

    Wang X, Yang C, Jin J, Li X, Cheng Q, Wang G 2018 J. Mater. Chem. A 6 4432Google Scholar

    [57]

    Li L, Lou Z, Han W, Chen D, Jiang K, Shen G 2017 Adv. Mater. Tech. 2 1600282Google Scholar

    [58]

    Shi M, Yang C, Song X, Liu J, Zhao L, Zhang P, Gao L 2017 Chem. Eng. J. 322 538Google Scholar

    [59]

    Lee Y, Chae S, Park H, Kim J, Jeong S H 2020 Chem. Eng. J. 382 122798Google Scholar

    [60]

    Li K, Huang Y, Liu J, Sarfraz M, Agboola P O, Shakir I, Xu Y 2018 J. Mater. Chem. A 6 1802Google Scholar

    [61]

    Huang Y, Hu H, Huang Y, Zhu M, Meng W, Liu C, Pei Z, Hao C, Wang Z, Zhi C 2015 ACS Nano 9 4766Google Scholar

    [62]

    Gu T, Wei B 2016 J. Mater. Chem. A 4 12289Google Scholar

    [63]

    Jost K, Dion G, Gogotsi Y 2014 J. Mater. Chem. A 2 10776Google Scholar

    [64]

    Guo K, Wang X, Hu L, Zhai T, Li H, Yu N 2018 ACS Appl. Mater. Interfaces 10 19820Google Scholar

    [65]

    Yu J, Lu W, Smith J P, Booksh K S, Meng L, Huang Y, Li Q, Byun J H, Oh Y, Yan Y, Chou T W 2017 Adv. Energy Mater. 7 1600976Google Scholar

    [66]

    Zhang Y, Bai W, Cheng X, Ren J, Weng W, Chen P, Fang X, Zhang Z, Peng H 2014 Angew. Chem. Int. Ed. 53 14564Google Scholar

    [67]

    Tang Q, Chen M, Yang C, Wang W, Bao H, Wang G 2015 ACS Appl. Mater. Interfaces 7 15303Google Scholar

    [68]

    Xie Y, Liu Y, Zhao Y, Tsang Y H, Lau S P, Huang H, Chai Y 2014 J. Mater. Chem. A 2 9142Google Scholar

    [69]

    Liu L, Tian Q, Yao W, Li M, Li Y, Wu W 2018 J. Power Sources 397 59Google Scholar

    [70]

    Yun T G, Hwang B, Kim D, Hyun S, Han S M 2015 ACS Appl. Mater. Interfaces 7 9228Google Scholar

    [71]

    Dong K, Wang Y C, Deng J, Dai Y, Zhang S L, Zou H, Gu B, Sun B, Wang Z L 2017 ACS Nano 11 9490Google Scholar

    [72]

    Hu L, Pasta M, Mantia F L, Cui L, Jeong S, Deshazer H D, Choi J W, Han S M, Cui Y 2010 Nano Lett. 10 708Google Scholar

    [73]

    Park H, Kim J W, Hong S Y, Lee G, Lee H, Song C, Keum K, Jeong Y R, Jin S W, Kim D S, Ha J S 2019 ACS Nano 13 10469Google Scholar

    [74]

    Yun J, Song C, Lee H, Park H, Jeong Y R, Kim J W, Jin S W, Oh S Y, Sun L, Zi G, Ha J S 2018 Nano Energy 49 644Google Scholar

    [75]

    Kim D, Shin G, Kang Y, Kim W, Ha J 2013 ACS Nano 7 7975Google Scholar

    [76]

    Lv Z, Tang Y, Zhu Z, Wei J, Li W, Xia H, Jiang Y, Liu Z, Luo Y, Ge X, Zhang Y, Wang R, Zhang W, Loh X J, Chen X 2018 Adv. Mater. 30 e1805468Google Scholar

    [77]

    Guo F M, Xu R Q, Cui X, Zhang L, Wang K L, Yao Y W, Wei J Q 2016 J. Mater. Chem. A 4 9311Google Scholar

    [78]

    Lv Z, Luo Y, Tang Y, Wei J, Zhu Z, Zhou X, Li W, Zeng Y, Zhang W, Zhang Y, Qi D, Pan S, Loh X J, Chen X 2018 Adv. Mater. 30 1704531Google Scholar

    [79]

    Ren D, Dong L, Wang J, Ma X, Xu C, Kang F 2018 Chem. Select. 3 4179Google Scholar

    [80]

    Ren J, Ren R P, Lv Y K 2018 Chem. Eng. J. 349 111Google Scholar

    [81]

    Shao G, Yu R, Zhang X, Chen X, He F, Zhao X, Chen N, Ye M, Liu X 2020 Adv. Funct. Mater. 2003151

    [82]

    Chen X, Lin H, Chen P, Guan G, Deng J, Peng H 2014 Adv. Mater. 26 4444Google Scholar

    [83]

    Zhang N, Zhou W, Zhang Q, Luan P, Cai L, Yang F, Zhang X, Fan Q, Zhou W, Xiao Z, Gu X, Chen H, Li K, Xiao S, Wang Y, Liu H, Xie S 2015 Nanoscale 7 12492Google Scholar

    [84]

    Chen Y, Xu B, Wen J, Gong J, Hua T, Kan C W, Deng J 2018 Small 14 e1704373Google Scholar

    [85]

    Zhang N, Luan P, Zhou W, Zhang Q, Cai L, Zhang X, Zhou W, Fan Q, Yang F, Zhao D, Wang Y, Xie S 2014 Nano Res. 7 1680Google Scholar

    [86]

    Li H, Ding Y, Ha H, Shi Y, Peng L, Zhang X, Ellison C J, Yu G 2017 Adv. Mater. 29 1700898Google Scholar

    [87]

    Moon H, Lee H, Kwon J, Suh Y D, Kim D K, Ha I, Yeo J, Hong S, Ko S H 2017 Sci. Rep. 7 41981Google Scholar

    [88]

    Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H 2016 Nano Energy 27 230Google Scholar

    [89]

    Zhou G, Kim N R, Chun S E, Lee W, Um M K, Chou T W, Islam M F, Byun J H, Oh Y 2018 Carbon 130 137Google Scholar

    [90]

    Wang S, Liu N, Su J, Li L, Long F, Zou Z, Jiang X, Gao Y 2017 ACS Nano 11 2066Google Scholar

    [91]

    Choi C, Lee J M, Kim S H, Kim S J, Di J, Baughman R H 2016 Nano Lett. 16 7677Google Scholar

    [92]

    Kim K J, Lee J A, Lima M D, Baughman R H, Kim S J 2016 RSC Adv. 6 24756Google Scholar

    [93]

    Wang Z, Cheng J, Guan Q, Huang H, Li Y, Zhou J, Ni W, Wang B, He S, Peng H 2018 Nano Energy 45 210Google Scholar

    [94]

    Xu J, Ding J, Zhou X, Zhang Y, Zhu W, Liu Z, Ge S, Yuan N, Fang S, Baughman R H 2017 J. Power Sources 340 302Google Scholar

    [95]

    Zhang Q, Sun J, Pan Z, Zhang J, Zhao J, Wang X, Zhang C, Yao Y, Lu W, Li Q, Zhang Y, Zhang Z 2017 Nano Energy 39 219Google Scholar

    [96]

    Choi C, Kim J H, Sim H J, Di J, Baughman R H, Kim S J 2016 Adv. Energy Mater. 7 1602021Google Scholar

    [97]

    Zang X, Zhu M, Li X, Li X, Zhen Z, Lao J, Wang K, Kang F, Wei B, Zhu H 2015 Nano Energy 15 83Google Scholar

    [98]

    Yu C, Masarapu C, Rong J, Wei B, Jiang H 2009 Adv. Mater. 21 4793Google Scholar

    [99]

    Chen C, Qin H, Cong H, Yu S 2019 Adv. Mater. 31 1900573Google Scholar

    [100]

    Zheng X, Zhou X, Xu J, Zou L, Nie W, Hu X, Dai S, Qiu Y, Yuan N 2020 J. Mater. Sci. 55 8251Google Scholar

    [101]

    Li X, Gu T, Wei B 2012 Nano Lett. 12 6366Google Scholar

    [102]

    Zang J, Cao C, Feng Y, Liu J, Zhao X 2014 Sci. Rep. 4 6492Google Scholar

    [103]

    Zhao C, Jia X, Shu K, Yu C, Min Y, Wang C 2020 Electrochim. Acta 343 136099Google Scholar

    [104]

    Jeong H 2020 Carbon Lett. 30 55Google Scholar

    [105]

    Zhao C, Wang C, Yue Z, Shu K, Wallace G G 2013 ACS Appl. Mater. Interfaces 5 9008Google Scholar

    [106]

    Chen T, Peng H, Durstock M, Dai L 2014 Sci. Rep. 4 3612Google Scholar

    [107]

    Hong S, Yoon J, Jin S, Lim Y, Lee S, Zi G, Ha J 2014 ACS Nano 8 8844Google Scholar

    [108]

    Park S, Thangavel G, Parida K, Li S, Lee P 2019 Adv. Mater. 31 1805536Google Scholar

    [109]

    Qi D, Liu Z, Liu Y, Leow W, Zhu B, Yang H, Yu J, Wang W, Wang H, Yin S, Chen X 2015 Adv. Mater. 27 5559Google Scholar

    [110]

    Lee J, Kim W, Kim W 2014 ACS Appl. Mater. Interfaces 6 13578Google Scholar

    [111]

    Fu X, Li Z, Xu L, Liao M, Sun H, Xie S, Sun X, Wang B, Peng H 2019 Sci. China Mater. 62 955Google Scholar

    [112]

    Luan P, Zhang N, Zhou W, Niu Z, Zhang Q, Cai L, Zhang X, Yang F, Fan Q, Zhou W, Xiao Z, Gu X, Chen H, Li K, Xiao S, Wang Y, Liu H, Xie S 2016 Adv. Funct. Mater. 26 8178Google Scholar

    [113]

    Lee H, Hong S, Lee J, Suh Y D, Kwon J, Moon H, Kim H, Yeo J, Ko S H 2016 ACS Appl. Mater. Interfaces 8 15449Google Scholar

    [114]

    Yun T, Park M, Kim D, Kim D, Cheong J, Bae J, Han S, Kim D 2019 ACS Nano 13 3141Google Scholar

    [115]

    Fu Y, Wu H, Ye S, Cai X, Yu X, Hou S, Kafafy H, Zou D 2013 Energy Environ. Sci. 6 805Google Scholar

    [116]

    Liao M, Ye L, Zhang Y, Chen T, Peng H 2019 Adv. Electron. Mater. 5 1800456Google Scholar

    [117]

    Sun H, Zhang Y, Zhang J, Sun X, Peng H 2017 Nat. Rev. Mater. 2 17023Google Scholar

    [118]

    Zhang Y, Zhao Y, Ren J, Weng W, Peng H 2016 Adv. Mater. 28 4524Google Scholar

    [119]

    Hong Y, Cheng X, Liu G, Hong D, He S, Wang B, Sun X, Peng H 2019 Chin. J. Polym. Sci. 37 737Google Scholar

    [120]

    Xu P, Kang J, Choi J, Suhr J, Yu J, Li F, Byun J, Kim B, Chou T 2014 ACS Nano 8 9437Google Scholar

    [121]

    Hao G, Hippauf F, Oschatz M, Wisser F, Leifert A, Nickel W, Noroega N, Zheng Z, Kaskel S 2014 ACS Nano 8 7138Google Scholar

    [122]

    Huang Y, Zhong M, Huang Y, Zhu M, Pei Z, Wang Z, Xue Q, Xie X, Zhi C 2015 Nat. Commun. 6 10310Google Scholar

    [123]

    Zhao Y, Chen S, Hu J, Yu J, Feng G, Yang B, Li C, Zhao N, Zhu C, Xu J 2018 ACS Appl. Mater. Interfaces 10 19323Google Scholar

    [124]

    Li P, Jin Z, Peng L, Zhao F, Xiao D, Jin Y, Yu G 2018 Adv. Mater. 30 e1800124Google Scholar

    [125]

    Guo Y, Zheng K, Wan P 2018 Small 14 e1704497Google Scholar

    [126]

    Wang Y, Chen F, Liu Z, Tang Z, Yang Q, Zhao Y, Du S, Chen Q, Zhi C 2019 Angew. Chem. Int. Ed. 58 15707Google Scholar

    [127]

    Textile Standards, ASTM International https://www.astm.org/Standards/textile-standards.html [2020-6-30]

    [128]

    Vlad A, Singh N, Galande C, Ajayan P M 2015 Adv. Energy Mater. 5 1402115Google Scholar

  • [1] 张问博, 刘少承, 廖亮, 魏文崟, 李乐天, 王亮, 颜宁, 钱金平, 臧庆. 基于超级电容器的充放电电路系统研制及其在EAST限制器探针测量中的应用.  , 2024, 73(6): 065203. doi: 10.7498/aps.73.20231697
    [2] 韩帅, 郭秋卜, 陆雅翔, 陈立泉, 胡勇胜. 低温水系碱金属离子电池的研究进展.  , 2023, 72(7): 070702. doi: 10.7498/aps.72.20230024
    [3] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究.  , 2022, 71(19): 198101. doi: 10.7498/aps.71.20220715
    [4] 何文倩, 周湘, 刘遵峰. 可拉伸导体的最新进展.  , 2020, 69(17): 177401. doi: 10.7498/aps.69.20200632
    [5] 瞿立建. 浸没于带电纳米粒子溶液中的聚电解质刷: 强拉伸理论.  , 2020, 69(14): 148201. doi: 10.7498/aps.69.20200432
    [6] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性.  , 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [7] 任元, 邹喆乂, 赵倩, 王达, 喻嘉, 施思齐. 浅析电解质中离子输运的微观物理图像.  , 2020, 69(22): 226601. doi: 10.7498/aps.69.20201519
    [8] 叶安娜, 张晓华, 杨朝晖. 基于对苯二酚/碳纳米管阵列氧化还原增强固态超级电容器的研究.  , 2020, 69(12): 126101. doi: 10.7498/aps.69.20200204
    [9] 张鑫, 陈星, 白天, 游兴艳, 赵鑫, 刘向阳, 叶美丹. 柔性纤维状超级电容器的研究进展.  , 2020, 69(17): 178201. doi: 10.7498/aps.69.20200159
    [10] 巫梦丹, 周胜林, 叶安娜, 王敏, 张晓华, 杨朝晖. 基于中性水凝胶/取向碳纳米管阵列高电压柔性固态超级电容器.  , 2019, 68(10): 108201. doi: 10.7498/aps.68.20182288
    [11] 朱畦, 袁协涛, 诸翊豪, 张晓华, 杨朝晖. 基于收缩高密度碳纳米管阵列的柔性固态超级电容器.  , 2018, 67(2): 028201. doi: 10.7498/aps.67.20171855
    [12] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能.  , 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [13] 张诚, 邓明森, 蔡绍洪. 基于镍泡沫支撑的Co3O4纳米多孔结构的高性能超级电容器电极.  , 2017, 66(12): 128201. doi: 10.7498/aps.66.128201
    [14] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁. 基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管.  , 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [15] 王军霞, 毕卓能, 梁柱荣, 徐雪青. 新型碳材料在钙钛矿太阳电池中的应用研究进展.  , 2016, 65(5): 058801. doi: 10.7498/aps.65.058801
    [16] 钟诚, 陈智全, 杨伟国, 夏辉. 电解质对浓悬浮液中胶体颗粒扩散特性的影响.  , 2013, 62(21): 214207. doi: 10.7498/aps.62.214207
    [17] 於黄忠, 温源鑫. 不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响.  , 2011, 60(3): 038401. doi: 10.7498/aps.60.038401
    [18] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响.  , 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [19] 段 萍, 刘金远, 宫 野, 张 宇, 刘 悦, 王晓钢. 等离子体鞘层中尘埃粒子的分布特性.  , 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [20] 俞文海, 丁屹. 固体电解质与电极之间界面的分数维模型及其频率响应.  , 1989, 38(10): 1621-1627. doi: 10.7498/aps.38.1621
计量
  • 文章访问数:  18228
  • PDF下载量:  540
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-10
  • 修回日期:  2020-07-10
  • 上网日期:  2020-09-02
  • 刊出日期:  2020-09-05

/

返回文章
返回
Baidu
map