搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小型低频发射天线的研究进展

崔勇 吴明 宋晓 黄玉平 贾琦 陶云飞 王琛

引用本文:
Citation:

小型低频发射天线的研究进展

崔勇, 吴明, 宋晓, 黄玉平, 贾琦, 陶云飞, 王琛

Research progress of small low-frequency transmitting antenna

Cui Yong, Wu Ming, Song Xiao, Huang Yu-Ping, Jia Qi, Tao Yun-Fei, Wang Chen
PDF
HTML
导出引用
  • 机械天线是通过电荷或磁偶极子的机械运动产生电磁场辐射的新型低频发射天线. 新型的辐射原理使其能够打破传统天线波长对物理尺寸的约束, 从而以较小的尺寸实现低频通信, 为对潜通信、透地通信等场景提供了颠覆性的解决方案. 近年来机械天线吸引了国内外众多研究团队的关注, 是低频通信领域的研究热点. 本综述简要回顾了传统的低频发射天线发展情况, 详细介绍了机械天线不同实现方案的研究进展, 对比了各方案的辐射性能与优缺点, 并针对机械天线信号调制方法进行了探讨, 最后展望了机械天线的未来研究方向.
    Low-frequency electromagnetic waves have the characteristics of long propagation distance, strong resistance to electromagnetic pulse interference, and slow attenuation in seawater and other media. However, conventional low-frequency transmitting antennas have problems such as bulkiness, high power consumption, and low efficiency, which are not conducive to the performance of low-frequency electromagnetic waves. The mechanical antenna is a new type of low-frequency transmitting antenna that generates time-varying electromagnetic field radiation through the mechanical movement of electric charges or magnetic dipoles. The new radiation principle enables mechanical antennas to break the constraints on the physical size of electromagnetic waves in the traditional antenna field, thereby achieving low-frequency communication with a smaller size and higher efficiency, providing a subversive solution to scenarios such as submarine communication and through-the-earth communication. In recent years, mechanical antennas have attracted much attention and become a hot research topic in the field of low-frequency communication. In this paper, we briefly review the development history, development direction, and existing problems of traditional large-scale land-based low-frequency transmit antennas and persistent mobile low-frequency transmit antennas; we mention the details of the working principles and recent research progress of different mechanical antenna implementations including electret, permanent magnet and piezoelectric mechanical antennas; we compare and analyze the radiation performance, innovations, advantages and disadvantages of each specific implementation scheme; and we also discuss the characteristics of the existing frequency modulation, amplitude modulation, polarization modulation and other signal modulation methods of mechanical antennas and the application schemes of several signal modulation methods of different types of mechanical antennas; finally, we prospect the research direction of mechanical antennas in the next stage. At present, the feasibility of the mechanical antenna scheme has been verified theoretically and experimentally, but it is limited by the antenna volume, power consumption, driving device and other factors, and the radiation intensity of the mechanical antenna is limited. We believe that the research in the field of mechanical antennas in the next stage will focus on the design of antennas for achieving longer communication distances at the sacrifice of certain small and light weight indicators, and innovative signal loading and modulation methods to improve communication rates will also be worth paying attention to in the field of mechanical antennas.
      通信作者: 宋晓, songxiao@buaa.edu.cn
    • 基金项目: “十三五”军委装备发展预研领域基金(批准号: 61405180302)、国家自然科学基金(批准号: 51707006)和北京市自然科学基金(批准号: 4192033)资助的课题
      Corresponding author: Song Xiao, songxiao@buaa.edu.cn
    • Funds: Project supported by the Military Commission Equipment Development Pre-research Field Fund during the 13rd Five-Year Plan Period of China (Grant No. 61405180302), the National Natural Science Foundation of China (Grant No. 51707006), and the Natural Science Foundation of Beijing, China (Grant No. 4192033)
    [1]

    罗卓颖, 刘翠海, 黄玉成, 王崇 2009 舰船电子工程 29 148Google Scholar

    Luo Z Y, Liu C H, Huang Y C, Wang C 2009 Ship Electron. Eng. 29 148Google Scholar

    [2]

    丁宏 2017 现代军事 4 71

    Ding H 2017 Conmilit 4 71

    [3]

    王毅凡, 周密, 宋志慧 2014 通信技术 47 589Google Scholar

    Wang Y F, Zhou M, Song Z H 2014 Commun. Technol. 47 589Google Scholar

    [4]

    史伟, 野学范, 胡冬梅 2011 数字技术与应用 7 12Google Scholar

    Shi W, Ye X F, Hu D M 2011 Digital Technol. Appl. 7 12Google Scholar

    [5]

    左卫, 阚荣才, 任席闯 2014 舰船电子工程 34 151Google Scholar

    Zuo W, Kan R C, Ren X C 2014 Ship Electron. Eng. 34 151Google Scholar

    [6]

    陆建勋 2013 极低频与超低频无线电技术 (哈尔滨: 哈尔滨工程大学出版社) 第22页

    Lu J X 2013 Extreme Low Frequency and Super Low Frequency Radio Technology (Harbin: Harbin Engineering University press) p22 (in Chinese)

    [7]

    夏明耀, 陈志雨 1995 电子科学学刊 2 125

    Xia M Y, Chen Z Y 1995 J. Electron. 2 125

    [8]

    李斐 2014 硕士学位论文 (西安: 西安电子科技大学)

    Li F 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [9]

    周晨, 王翔, 刘默然, 倪彬彬, 赵正予 2018 地球 61 4323Google Scholar

    Zhou C, Wang X, Liu M R, Ni B B, Zhao Z Y 2018 Chin. J. Geophys. 61 4323Google Scholar

    [10]

    Cohen M B, Moore R C, Golkowski M, Lehtinen N G 2012 J. Geophys. Res. Space Phys. 117 A12Google Scholar

    [11]

    Kuo S, Snyder A, Kossey P, Chang C L, Labenski J 2012 J. Geophys. Res. Space Phys. 117 A3Google Scholar

    [12]

    常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨 2014 63 069401Google Scholar

    Chang S S, Ni B B, Zhao Z Y, Wang F, Li J X, Zhao J J, Gu X D, Zhou C 2014 Acta Phys. Sin. 63 069401Google Scholar

    [13]

    郝书吉, 李清亮, 杨巨涛, 吴振森 2013 62 229402Google Scholar

    Hao S J, Li Q L, Yang J T, Wu Z S 2013 Acta Phys. Sin. 62 229402Google Scholar

    [14]

    徐彤, 徐彬, 吴健, 胡艳莉, 许正文 2014 极地研究 26 316Google Scholar

    Xu T, Xu B, Wu J, Hu Y, Xu Z 2014 Chin. J. Polar Res. 26 316Google Scholar

    [15]

    杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎 2017 66 019401Google Scholar

    Yang J T, Li Q L, Wang J G, Hao S J, Pan W Y 2017 Acta Phys. Sin. 66 019401Google Scholar

    [16]

    Cohen M B 2010 Ph. D. Dissertation (Stanford: Stanford University)

    [17]

    刘翠海, 王文清 2011 电讯技术 51 187Google Scholar

    Liu C H, Wang W Q 2011 Telecommun. Eng. 51 187Google Scholar

    [18]

    Koons H, Dazey M 1983 IEEE Trans. Antennas Propag. 31 243Google Scholar

    [19]

    董见, 罗建新 2015 舰船电子工程 35 159Google Scholar

    Dong J, Luo J X 2015 Ship Electron. Eng. 35 159Google Scholar

    [20]

    魏亮, 柳超 2007 现代电子技术 1 14Google Scholar

    Wei L, LIu C 2007 Mod. Electron. Tech. 1 14Google Scholar

    [21]

    吴笛 2009 舰船电子工程 29 68Google Scholar

    Wu D 2009 Ship Electron. Eng. 29 68Google Scholar

    [22]

    贾琦 2014 硕士学位论文 (北京: 中国科学院大学(工程管理与信息技术学院))

    Jia Q 2014 M. S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    郑小洪, 侯志强, 李冀鑫 2011 海军航空工程学院学报 26 628Google Scholar

    Zheng X H, Hou Z Q, Li J X 2011 J. Naval Aeronaut. Astronaut. Univ. 26 628Google Scholar

    [24]

    樊文生, 张世田, 韩逍菲 2015 电波科学学报 30 114Google Scholar

    Fan W S, Zhang S T, Han X F 2015 Chin. J. Radio Sci. 30 114Google Scholar

    [25]

    Li K 1997 Proceedings of 1997 Asia-Pacific Microwave Conference Hong Kong, Dec. 2–5, 1997 p1233 DOI: 10.1109/APMC. 1997.656537

    [26]

    李凯 1998 全球定位系统 1 59

    Li K 1998 GNSS World Chin. 1 59

    [27]

    McLean J S 1996 IEEE Trans. Antennas Propag. 44 672Google Scholar

    [28]

    Thiele G A, Detweiler P L, Penno R P 2003 IEEE Trans. Antennas Propag. 51 1263Google Scholar

    [29]

    夏钟福, 陈钢进, 肖慧明 2006 55 2464Google Scholar

    Xia Z F, Chen G J, Xiao H M 2006 Acta Phys. Sin. 55 2464Google Scholar

    [30]

    Wedel A, Danz R, 夏钟福, 邱勋林, 张冶文 2002 51 389Google Scholar

    Wedel A, Danz R, Xia Z F, Qiu X L, Zhang Y W 2002 Acta Phys. Sin. 51 389Google Scholar

    [31]

    Erhard D P, Lovera D, von Salis-Soglio C, Giesa R, Altstadt V, Schmidt H W (Muller A H E, Schmidt H W Ed.) 2010 Complex Macromolecular Systems Ii (Berlin: Springer-Verlag Berlin) pp155–207

    [32]

    Bickford J A 2019 US Patent US10177452 B2 [2019-01-08]

    [33]

    Bickford J A, Duwel A E, Weinberg M S, McNabb R S, Freeman D K, Ward P A 2019 IEEE Trans. Antennas Propag. 67 2209Google Scholar

    [34]

    Bickford J A, McNabb R S, Ward P A, et al. 2017 2017 IEEE International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting San Diego, CA, USA July 9–14, 2017 p1475

    [35]

    Cui Y, Wang C, Wei M 2019 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, GA, USA, July 7–12, 2019 p1383

    [36]

    崔勇, 王琛, 宋晓, 梁博文 2019 自动化学报 45 1Google Scholar

    Cui Y, Wang C, Song X, Liang B W 2019 Acta Automatica Sin. 45 1Google Scholar

    [37]

    崔勇, 王琛, 宋晓, 袁海文, 刘颖异 2020 中国专利 CN109004948B [2020-07-28

    Cui Y, Wang C, Song X, Yuan H W, Liu Y Y 2020 CN Patent CN109004948B [2020-07-28] (in Chinese)

    [38]

    Liang B W, Cui Y, Song X, Li L Y, Wang C 2019 Int. J. Model. Simul. Sci. Comput. 10 1950036Google Scholar

    [39]

    Burch H C, Garraud A, Mitchell M F, Moore R C, Arnold D P 2018 IEEE Trans. Antennas Propag. 66 6265Google Scholar

    [40]

    Cao J, Liu Y, Gong S H 2019 2019 International Conference on Electronic Engineering and Informatics (EEI) Nanjing, China, Nov. 8–10, 2019 p140

    [41]

    Gong S H, Liu Y, Liu Y 2018 Prog. Electromagn. Res. M 72 125Google Scholar

    [42]

    Madanayake A, Choi S, Tarek M, Dharmasena S, Mandal S, Glickstein J, Sehirlioglu A 2017 2017 3rd International Moratuwa Engineering Research Conference Moratuwa, Sri Lanka, May 29−31, 2017 p230

    [43]

    丁春全, 宋海洋 2019 舰船电子工程 39 166Google Scholar

    Ding C Q, Song H Y 2019 Ship Electron. Eng. 39 166Google Scholar

    [44]

    Manteghi M 2017 2017 IEEE International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting San Diego, CA, USA, July 9–14, 2017 p1997

    [45]

    施伟, 周强, 刘斌 2019 68 188401Google Scholar

    Shi W, Zhou Q, Liu B 2019 Acta Phys. Sin. 68 188401Google Scholar

    [46]

    周强, 姚富强, 施伟, 郝振洋, 郑欢, 刘斌, 何攀峰 2020 中国科学:技术科学 50 69Google Scholar

    Zhou Q, Yuan F Q, Shi W, Hao Z Y, Zheng H, Liu B, He P F 2020 Sci. Sin. Technologica 50 69Google Scholar

    [47]

    Golkowski M, Park J, Bittle J, Babaiahgari B, Rorrer R A L, Celinski Z 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p65

    [48]

    Fawole O C, Tabib-Azar M 2017 IEEE Trans. Antennas Propag. 65 6927Google Scholar

    [49]

    Barani N, Sarabandi K 2019 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, GA, USA, July 7–12, 2019 p2169

    [50]

    Barani N, Sarabandi K 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p95

    [51]

    Prasad M N S, Tok R U, Fereidoony F, Wang Y E, Zhu R, Propst A, Bland S 2019 Sci. Rep. 9 13220Google Scholar

    [52]

    Mysore Nagaraja S P, Tok R U, Zhu R, Bland S, Propst A, Wang Y E 2019 J. Phys. Conf. Ser. 1407 012049Google Scholar

    [53]

    Prasad M N S, Huang Y, Wang Y E 2017 IEEE 2017 XXXⅡnd General Assembly and Scientific Symposium of the International Union of Radio Science Montreal, QC, Canada, Aug. 19–26, 2017 p1

    [54]

    Prasad M N S, Selvin S, Tok R U, Huang Y K, Wang Y X 2018 2018 IEEE Radio & Wireless Symposium Anaheim, CA, USA, Jan. 15–18, 2018 p171

    [55]

    Prasad M N S, Tok R U, Wang Y E 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p71

    [56]

    Selvin S, Prasad M N S, Huang Y K, Wang E 2017 2017 IEEE International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting San Diego, CA, USA, July 9–14, 2017 p1477

    [57]

    Kemp M A, Franzi M, Haase A, Jongewaard E, Whittaker M T, Kirkpatrick M, Sparr R 2019 Nat. Commun. 10 1715Google Scholar

    [58]

    Hassanien A E, Breen M, Li M H, Gong S 2019 arXiv: 1906.07797[physics.app-ph]

    [59]

    Dong C Z, He Y F, Li M H, Tu C, Chu Z Q, Liang X F, Chen H H, Wei Y Y, Zaeimbashi M, Wang X J, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Lett. 19 398Google Scholar

    [60]

    Xu J, Leung C M, Zhuang X, Li J, Bhardwaj S, Volakis J, Viehland D 2019 Sensors 19 853Google Scholar

    [61]

    Zheng H, Zhao J B, Xiang B, Xiong Q P, Deng F S 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p751

    [62]

    Glickstein J S, Liang J, Choi S, Madanayake A, Mandal S 2020 IEEE Access 8 2455Google Scholar

    [63]

    Strachen N, Booske J, Behdad N 2018 PLoS One 13 e0199934Google Scholar

    [64]

    Strachen N D, Booske J H, Behdad N 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p67

    [65]

    张多佳 2019 硕士学位论文 (西安: 西安理工大学)

    Zhang D J 2019 B. S. Thesis (Xi’an: Xi’an University of Technology) (in Chinese)

    [66]

    胡伯平 2014 磁性材料及器件 45 66Google Scholar

    Hu B P 2014 J. Magn. Mater. Devics 45 66Google Scholar

    [67]

    胡文艳 2012 现代电子技术 35 151Google Scholar

    Hu W Y 2012 Mod. Electron. Tech. 35 151Google Scholar

    [68]

    Brown D, Ma B M, Chen Z M 2002 J. Magn. Magn. Mater. 248 432Google Scholar

    [69]

    Sugimoto S 2011 J. Phys. D: Appl. Phys. 44 11Google Scholar

    [70]

    Bai G, Gao R W, Sun Y, Han G B, Wang B 2007 J. Magn. Magn. Mater. 308 20Google Scholar

    [71]

    Cao S, Yue M, Yang Y X, Zhang D, Liu W, Zhang J, Guo Z, Li W 2011 J. Appl. Phys. 109 07A740Google Scholar

    [72]

    Ma B M, Liu W L, Liang Y L, Scott D, Bounds C O 1994 J. Appl. Phys. 75 6628Google Scholar

    [73]

    陈钢进, 饶成平, 肖慧明, 黄华, 赵延海 2015 64 237702Google Scholar

    Chen G J, Rao C P, Xiao H M, Huang H, Zhao Y H 2015 Acta Phys. Sin. 64 237702Google Scholar

    [74]

    肖慧明, 温中泉, 张锦文, 陈钢进 2007 功能材料 38 1297Google Scholar

    Xiao H M, Wen Z Q, Zhang J W, Chen G J 2007 J. Funct. Mater. 38 1297Google Scholar

    [75]

    赵满 2013 电子信息对抗技术 28 69Google Scholar

    Zhao M 2013 Elec. Inf. Warfare Technol. 28 69Google Scholar

    [76]

    朱松 2007 中国电子科学研究院学报 2 562

    Zhu S 2007 J. Chin. Acad. Electron Inf. Technol. 2 562

  • 图 1  大规模陆基低频对潜通信系统 (a) 位于Nizhny Novgorod的“歌利亚”对潜通信天线阵列; (b) 位于美国Upper Peninsula的美国海军对潜低频通信基地; (c) ZEVS低频对潜通信系统天线分布

    Fig. 1.  Large-scale land-based low-frequency submarine communication system: (a) Antenna array of "Golia" pair submarine communication in Nizhny Novgorod; (b) U.S. Navy's low-frequency submarine communication base on the Upper Peninsula of the United States; (c) ZEVS antenna distribution of low frequency submarine communication system.

    图 2  双波束幅度调制形成两个 “ELF/VLF 偶极子天线” 示意图[13]

    Fig. 2.  Schematic diagram of dual beam amplitude modulation to form two “ELF/VLF dipole antennas”[13].

    图 3  顽存机动式低频天线 (a)气球升举式; (b)机载双拖曳式

    Fig. 3.  Stubborn mobile low-frequency antenna: (a) Balloon lift; (b) airborne double tow.

    图 4  旋转驻极体式机械天线原理模型[36]

    Fig. 4.  Principle model of rotating electret mechanical antenna[36].

    图 5  多瓣驻极体天线结构[38] (a) 二分布驻极体天线; (b) 六分布驻极体天线

    Fig. 5.  Multi-block electret antenna structure[38]: (a) Two distributed electret antenna; (b) six distributed electret antenna.

    图 6  典型永磁体式机械天线 (a)佛罗里达大学方案[39]; (b)西安电子科技大学方案[40]; (c)科罗拉多大学丹佛分校方案[47]; (d)犹他大学方案[48]; (e)密歇根大学方案[49]; (f)加州大学洛杉矶分校方案[51]

    Fig. 6.  Typical permanent magnet type mechanical antenna: (a) University of Florida[39]; (b) Xidian University[40]; (c) University of Colorado Denver[47]; (d) University of Utah[48]; (e) University of Michigan[49]; (f) University of California, Los Angeles[51].

    图 7  压电式机械天线结构模型 (a)斯坦福大学方案[57]; (b)伊利诺伊大学厄巴纳-香槟分校方案[58]

    Fig. 7.  Structural model of piezoelectric mechanical antenna: (a) SLAC National Accelerator Laboratory[57]; (b) University of Illinois at Urbana-champaign[58].

    图 8  磁电式机械天线结构模型[59] (a)磁电天线结构; (b)磁电天线俯视图; (c)磁电天线侧视图; (d)发射天线与接收天线

    Fig. 8.  Structural model of piezoelectric mechanical antenna[59]: (a) Schematic of the ME antenna; (b) top view of a fabricated ME antenna prototype; (c) side view of the schematic and fabricated ME antenna; (d) one pair of ME transmitter and receiver packed in plastic boxes.

    图 9  中国船舶重工集团七二二所机械天线结构模型[61]

    Fig. 9.  Mechanical antenna structure model of 722 nd Research Institute of CSIC[61].

    图 10  常见调制方案示意图 (a) 频率调制示意图; (b) 幅度调制示意图

    Fig. 10.  Schematic diagram of common modulation schemes: (a) FSK; (b) ASK.

    图 11  压电谐振式机械天线频率调制示意图 (a)美国斯坦福大学频率调制方案[57]; (b)美国伊利诺伊大学厄巴纳-香槟分校频率调制方案[58]

    Fig. 11.  Schematic diagram of frequency modulation of piezoelectric resonant mechanical antenna: (a) SLAC National Accelerator Laboratory[57]; (b) University of Illinois at Urbana-champaign[58].

    图 12  美国威斯康星大学麦迪逊分校幅度调制方案[64]

    Fig. 12.  Amplitude modulation scheme of the University of Wisconsin-Madison[64].

    表 1  各团队机械天线性能对比

    Table 1.  Performance comparison of mechanical antennas of various teams.

    天线方案团队名称材料尺寸/cm频率范围磁场强度参考
    文献
    驻极体式机械天线北京航空航天大学美国
    加州大学伯克利分校
    FEP5.00—200 Hz[35]
    永磁体式
    机械天线
    单永磁体美国佛罗里达大学N42钕铁硼1.6100—500 Hz800 fT (100 m)[39]
    美国威斯康星大学麦迪逊分校N42钕铁硼1.930 Hz10 μT (0.3 m)[64]
    美国科罗拉多大学丹佛分校钕铁硼 钢0—1.6 kHz50 pT (5 m)[47]
    美国犹他大学钕铁硼135.047 μT (50 m)[48]
    西安电子科技大学钕铁硼15.030 Hz1 nT (0.6 m)[40]
    永磁体
    阵列
    美国加州大学洛杉矶分校N55钕铁硼13.01031 Hz[51]
    压电谐振式
    机械天线
    压电式美国斯坦福大学SLAC实验室LiNbO39.435.5 kHz[57]
    美国伊利诺伊大学厄巴纳-香槟分校PZT8.033.2 kHz40 fT (6 m)[58]
    磁电式美国弗吉尼亚理工大学PZT Metglas10.030 kHz1 nT (0.9 m)[60]
    美国波士顿东北大学PZT Metglas10.023.95 kHz0.1 nT (120 m)[59]
    下载: 导出CSV
    Baidu
  • [1]

    罗卓颖, 刘翠海, 黄玉成, 王崇 2009 舰船电子工程 29 148Google Scholar

    Luo Z Y, Liu C H, Huang Y C, Wang C 2009 Ship Electron. Eng. 29 148Google Scholar

    [2]

    丁宏 2017 现代军事 4 71

    Ding H 2017 Conmilit 4 71

    [3]

    王毅凡, 周密, 宋志慧 2014 通信技术 47 589Google Scholar

    Wang Y F, Zhou M, Song Z H 2014 Commun. Technol. 47 589Google Scholar

    [4]

    史伟, 野学范, 胡冬梅 2011 数字技术与应用 7 12Google Scholar

    Shi W, Ye X F, Hu D M 2011 Digital Technol. Appl. 7 12Google Scholar

    [5]

    左卫, 阚荣才, 任席闯 2014 舰船电子工程 34 151Google Scholar

    Zuo W, Kan R C, Ren X C 2014 Ship Electron. Eng. 34 151Google Scholar

    [6]

    陆建勋 2013 极低频与超低频无线电技术 (哈尔滨: 哈尔滨工程大学出版社) 第22页

    Lu J X 2013 Extreme Low Frequency and Super Low Frequency Radio Technology (Harbin: Harbin Engineering University press) p22 (in Chinese)

    [7]

    夏明耀, 陈志雨 1995 电子科学学刊 2 125

    Xia M Y, Chen Z Y 1995 J. Electron. 2 125

    [8]

    李斐 2014 硕士学位论文 (西安: 西安电子科技大学)

    Li F 2014 M. S. Thesis (Xi’an: Xidian University) (in Chinese)

    [9]

    周晨, 王翔, 刘默然, 倪彬彬, 赵正予 2018 地球 61 4323Google Scholar

    Zhou C, Wang X, Liu M R, Ni B B, Zhao Z Y 2018 Chin. J. Geophys. 61 4323Google Scholar

    [10]

    Cohen M B, Moore R C, Golkowski M, Lehtinen N G 2012 J. Geophys. Res. Space Phys. 117 A12Google Scholar

    [11]

    Kuo S, Snyder A, Kossey P, Chang C L, Labenski J 2012 J. Geophys. Res. Space Phys. 117 A3Google Scholar

    [12]

    常珊珊, 倪彬彬, 赵正予, 汪枫, 李金星, 赵晶晶, 顾旭东, 周晨 2014 63 069401Google Scholar

    Chang S S, Ni B B, Zhao Z Y, Wang F, Li J X, Zhao J J, Gu X D, Zhou C 2014 Acta Phys. Sin. 63 069401Google Scholar

    [13]

    郝书吉, 李清亮, 杨巨涛, 吴振森 2013 62 229402Google Scholar

    Hao S J, Li Q L, Yang J T, Wu Z S 2013 Acta Phys. Sin. 62 229402Google Scholar

    [14]

    徐彤, 徐彬, 吴健, 胡艳莉, 许正文 2014 极地研究 26 316Google Scholar

    Xu T, Xu B, Wu J, Hu Y, Xu Z 2014 Chin. J. Polar Res. 26 316Google Scholar

    [15]

    杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎 2017 66 019401Google Scholar

    Yang J T, Li Q L, Wang J G, Hao S J, Pan W Y 2017 Acta Phys. Sin. 66 019401Google Scholar

    [16]

    Cohen M B 2010 Ph. D. Dissertation (Stanford: Stanford University)

    [17]

    刘翠海, 王文清 2011 电讯技术 51 187Google Scholar

    Liu C H, Wang W Q 2011 Telecommun. Eng. 51 187Google Scholar

    [18]

    Koons H, Dazey M 1983 IEEE Trans. Antennas Propag. 31 243Google Scholar

    [19]

    董见, 罗建新 2015 舰船电子工程 35 159Google Scholar

    Dong J, Luo J X 2015 Ship Electron. Eng. 35 159Google Scholar

    [20]

    魏亮, 柳超 2007 现代电子技术 1 14Google Scholar

    Wei L, LIu C 2007 Mod. Electron. Tech. 1 14Google Scholar

    [21]

    吴笛 2009 舰船电子工程 29 68Google Scholar

    Wu D 2009 Ship Electron. Eng. 29 68Google Scholar

    [22]

    贾琦 2014 硕士学位论文 (北京: 中国科学院大学(工程管理与信息技术学院))

    Jia Q 2014 M. S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [23]

    郑小洪, 侯志强, 李冀鑫 2011 海军航空工程学院学报 26 628Google Scholar

    Zheng X H, Hou Z Q, Li J X 2011 J. Naval Aeronaut. Astronaut. Univ. 26 628Google Scholar

    [24]

    樊文生, 张世田, 韩逍菲 2015 电波科学学报 30 114Google Scholar

    Fan W S, Zhang S T, Han X F 2015 Chin. J. Radio Sci. 30 114Google Scholar

    [25]

    Li K 1997 Proceedings of 1997 Asia-Pacific Microwave Conference Hong Kong, Dec. 2–5, 1997 p1233 DOI: 10.1109/APMC. 1997.656537

    [26]

    李凯 1998 全球定位系统 1 59

    Li K 1998 GNSS World Chin. 1 59

    [27]

    McLean J S 1996 IEEE Trans. Antennas Propag. 44 672Google Scholar

    [28]

    Thiele G A, Detweiler P L, Penno R P 2003 IEEE Trans. Antennas Propag. 51 1263Google Scholar

    [29]

    夏钟福, 陈钢进, 肖慧明 2006 55 2464Google Scholar

    Xia Z F, Chen G J, Xiao H M 2006 Acta Phys. Sin. 55 2464Google Scholar

    [30]

    Wedel A, Danz R, 夏钟福, 邱勋林, 张冶文 2002 51 389Google Scholar

    Wedel A, Danz R, Xia Z F, Qiu X L, Zhang Y W 2002 Acta Phys. Sin. 51 389Google Scholar

    [31]

    Erhard D P, Lovera D, von Salis-Soglio C, Giesa R, Altstadt V, Schmidt H W (Muller A H E, Schmidt H W Ed.) 2010 Complex Macromolecular Systems Ii (Berlin: Springer-Verlag Berlin) pp155–207

    [32]

    Bickford J A 2019 US Patent US10177452 B2 [2019-01-08]

    [33]

    Bickford J A, Duwel A E, Weinberg M S, McNabb R S, Freeman D K, Ward P A 2019 IEEE Trans. Antennas Propag. 67 2209Google Scholar

    [34]

    Bickford J A, McNabb R S, Ward P A, et al. 2017 2017 IEEE International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting San Diego, CA, USA July 9–14, 2017 p1475

    [35]

    Cui Y, Wang C, Wei M 2019 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, GA, USA, July 7–12, 2019 p1383

    [36]

    崔勇, 王琛, 宋晓, 梁博文 2019 自动化学报 45 1Google Scholar

    Cui Y, Wang C, Song X, Liang B W 2019 Acta Automatica Sin. 45 1Google Scholar

    [37]

    崔勇, 王琛, 宋晓, 袁海文, 刘颖异 2020 中国专利 CN109004948B [2020-07-28

    Cui Y, Wang C, Song X, Yuan H W, Liu Y Y 2020 CN Patent CN109004948B [2020-07-28] (in Chinese)

    [38]

    Liang B W, Cui Y, Song X, Li L Y, Wang C 2019 Int. J. Model. Simul. Sci. Comput. 10 1950036Google Scholar

    [39]

    Burch H C, Garraud A, Mitchell M F, Moore R C, Arnold D P 2018 IEEE Trans. Antennas Propag. 66 6265Google Scholar

    [40]

    Cao J, Liu Y, Gong S H 2019 2019 International Conference on Electronic Engineering and Informatics (EEI) Nanjing, China, Nov. 8–10, 2019 p140

    [41]

    Gong S H, Liu Y, Liu Y 2018 Prog. Electromagn. Res. M 72 125Google Scholar

    [42]

    Madanayake A, Choi S, Tarek M, Dharmasena S, Mandal S, Glickstein J, Sehirlioglu A 2017 2017 3rd International Moratuwa Engineering Research Conference Moratuwa, Sri Lanka, May 29−31, 2017 p230

    [43]

    丁春全, 宋海洋 2019 舰船电子工程 39 166Google Scholar

    Ding C Q, Song H Y 2019 Ship Electron. Eng. 39 166Google Scholar

    [44]

    Manteghi M 2017 2017 IEEE International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting San Diego, CA, USA, July 9–14, 2017 p1997

    [45]

    施伟, 周强, 刘斌 2019 68 188401Google Scholar

    Shi W, Zhou Q, Liu B 2019 Acta Phys. Sin. 68 188401Google Scholar

    [46]

    周强, 姚富强, 施伟, 郝振洋, 郑欢, 刘斌, 何攀峰 2020 中国科学:技术科学 50 69Google Scholar

    Zhou Q, Yuan F Q, Shi W, Hao Z Y, Zheng H, Liu B, He P F 2020 Sci. Sin. Technologica 50 69Google Scholar

    [47]

    Golkowski M, Park J, Bittle J, Babaiahgari B, Rorrer R A L, Celinski Z 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p65

    [48]

    Fawole O C, Tabib-Azar M 2017 IEEE Trans. Antennas Propag. 65 6927Google Scholar

    [49]

    Barani N, Sarabandi K 2019 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting Atlanta, GA, USA, July 7–12, 2019 p2169

    [50]

    Barani N, Sarabandi K 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p95

    [51]

    Prasad M N S, Tok R U, Fereidoony F, Wang Y E, Zhu R, Propst A, Bland S 2019 Sci. Rep. 9 13220Google Scholar

    [52]

    Mysore Nagaraja S P, Tok R U, Zhu R, Bland S, Propst A, Wang Y E 2019 J. Phys. Conf. Ser. 1407 012049Google Scholar

    [53]

    Prasad M N S, Huang Y, Wang Y E 2017 IEEE 2017 XXXⅡnd General Assembly and Scientific Symposium of the International Union of Radio Science Montreal, QC, Canada, Aug. 19–26, 2017 p1

    [54]

    Prasad M N S, Selvin S, Tok R U, Huang Y K, Wang Y X 2018 2018 IEEE Radio & Wireless Symposium Anaheim, CA, USA, Jan. 15–18, 2018 p171

    [55]

    Prasad M N S, Tok R U, Wang Y E 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p71

    [56]

    Selvin S, Prasad M N S, Huang Y K, Wang E 2017 2017 IEEE International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting San Diego, CA, USA, July 9–14, 2017 p1477

    [57]

    Kemp M A, Franzi M, Haase A, Jongewaard E, Whittaker M T, Kirkpatrick M, Sparr R 2019 Nat. Commun. 10 1715Google Scholar

    [58]

    Hassanien A E, Breen M, Li M H, Gong S 2019 arXiv: 1906.07797[physics.app-ph]

    [59]

    Dong C Z, He Y F, Li M H, Tu C, Chu Z Q, Liang X F, Chen H H, Wei Y Y, Zaeimbashi M, Wang X J, Lin H, Gao Y, Sun N X 2020 IEEE Antennas Wirel. Propag. Lett. 19 398Google Scholar

    [60]

    Xu J, Leung C M, Zhuang X, Li J, Bhardwaj S, Volakis J, Viehland D 2019 Sensors 19 853Google Scholar

    [61]

    Zheng H, Zhao J B, Xiang B, Xiong Q P, Deng F S 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p751

    [62]

    Glickstein J S, Liang J, Choi S, Madanayake A, Mandal S 2020 IEEE Access 8 2455Google Scholar

    [63]

    Strachen N, Booske J, Behdad N 2018 PLoS One 13 e0199934Google Scholar

    [64]

    Strachen N D, Booske J H, Behdad N 2018 2018 IEEE Antennas and Propagation Society International Symposium on Antennas and Propagation & Usnc/Ursi National Radio Science Meeting Boston, MA, USA, July 8–13, 2018 p67

    [65]

    张多佳 2019 硕士学位论文 (西安: 西安理工大学)

    Zhang D J 2019 B. S. Thesis (Xi’an: Xi’an University of Technology) (in Chinese)

    [66]

    胡伯平 2014 磁性材料及器件 45 66Google Scholar

    Hu B P 2014 J. Magn. Mater. Devics 45 66Google Scholar

    [67]

    胡文艳 2012 现代电子技术 35 151Google Scholar

    Hu W Y 2012 Mod. Electron. Tech. 35 151Google Scholar

    [68]

    Brown D, Ma B M, Chen Z M 2002 J. Magn. Magn. Mater. 248 432Google Scholar

    [69]

    Sugimoto S 2011 J. Phys. D: Appl. Phys. 44 11Google Scholar

    [70]

    Bai G, Gao R W, Sun Y, Han G B, Wang B 2007 J. Magn. Magn. Mater. 308 20Google Scholar

    [71]

    Cao S, Yue M, Yang Y X, Zhang D, Liu W, Zhang J, Guo Z, Li W 2011 J. Appl. Phys. 109 07A740Google Scholar

    [72]

    Ma B M, Liu W L, Liang Y L, Scott D, Bounds C O 1994 J. Appl. Phys. 75 6628Google Scholar

    [73]

    陈钢进, 饶成平, 肖慧明, 黄华, 赵延海 2015 64 237702Google Scholar

    Chen G J, Rao C P, Xiao H M, Huang H, Zhao Y H 2015 Acta Phys. Sin. 64 237702Google Scholar

    [74]

    肖慧明, 温中泉, 张锦文, 陈钢进 2007 功能材料 38 1297Google Scholar

    Xiao H M, Wen Z Q, Zhang J W, Chen G J 2007 J. Funct. Mater. 38 1297Google Scholar

    [75]

    赵满 2013 电子信息对抗技术 28 69Google Scholar

    Zhao M 2013 Elec. Inf. Warfare Technol. 28 69Google Scholar

    [76]

    朱松 2007 中国电子科学研究院学报 2 562

    Zhu S 2007 J. Chin. Acad. Electron Inf. Technol. 2 562

  • [1] 邓晨华, 于忠海, 王宇涛, 孔森, 周超, 杨森. Ti掺杂Nd2Fe14B/α-Fe纳米双相复合永磁体晶化动力学.  , 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [2] 宋凯欣, 闵书刚, 高俊奇, 张双捷, 毛智能, 沈莹, 储昭强. 磁电机械天线的阻抗特性分析.  , 2022, 71(24): 247502. doi: 10.7498/aps.71.20220591
    [3] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者.  , 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [4] 王琛, 崔勇, 宋晓, 袁海文. 基于驻极体材料的机械天线式低频/甚低频通信磁场传播模型.  , 2020, 69(15): 158401. doi: 10.7498/aps.69.20200314
    [5] 李柱柏, 李赟, 秦渊, 张雪峰, 沈保根. 稀土永磁体及复合磁体反磁化过程和矫顽力.  , 2019, 68(17): 177501. doi: 10.7498/aps.68.20190364
    [6] 施伟, 周强, 刘斌. 基于旋转永磁体的超低频机械天线电磁特性分析.  , 2019, 68(18): 188401. doi: 10.7498/aps.68.20190339
    [7] 邓东阁, 武新军, 左苏. 基于永磁恒定磁场激励的起始磁化曲线测量.  , 2016, 65(14): 148101. doi: 10.7498/aps.65.148101
    [8] 陈钢进, 饶成平, 肖慧明, 黄华, 赵延海. 界面极化注极聚丙烯薄膜驻极体的电荷存储特性研究.  , 2015, 64(23): 237702. doi: 10.7498/aps.64.237702
    [9] 张林成, 陈钢进, 肖慧明, 蔡本晓, 黄华, 吴玲. 毫米级栅型电场分布FEP薄膜驻极体的制备及其电荷存储性能研究.  , 2015, 64(23): 237701. doi: 10.7498/aps.64.237701
    [10] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响.  , 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [11] 张欣梧, 张晓青. 聚丙烯压电驻极体膜的压电和声学性能研究.  , 2013, 62(16): 167702. doi: 10.7498/aps.62.167702
    [12] 马俊, 杨万民, 王妙, 陈森林, 冯忠岭. 辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响.  , 2013, 62(22): 227401. doi: 10.7498/aps.62.227401
    [13] 何永周. 永磁体外部磁场的不均匀性研究.  , 2013, 62(8): 084105. doi: 10.7498/aps.62.084105
    [14] 马俊, 杨万民, 李佳伟, 王妙, 陈森林. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响.  , 2012, 61(13): 137401. doi: 10.7498/aps.61.137401
    [15] 马俊, 杨万民, 李国政, 程晓芳, 郭晓丹. 永磁体辅助下单畴GdBCO超导体和永磁体之间的磁悬浮力研究.  , 2011, 60(2): 027401. doi: 10.7498/aps.60.027401
    [16] 陈钢进, 肖慧明, 夏钟福. 电晕充电多孔PTFE/PP复合驻极体过滤材料的电荷存储特性.  , 2006, 55(5): 2464-2469. doi: 10.7498/aps.55.2464
    [17] 王飞鹏, 夏钟福, 裘晓敏, 吕 航, 邱勋林, 沈 军. 压力膨化处理对正极性聚丙烯蜂窝膜的驻极体性质的影响.  , 2005, 54(9): 4400-4405. doi: 10.7498/aps.54.4400
    [18] 陈钢进, 夏钟福. 多孔聚四氟乙烯/氟代乙烯丙烯共聚物复合驻极体材料的压电效应研究.  , 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
    [19] 夏钟福, 邱勋林, 张冶文, ArminWedel, RudiDanz. 聚四氟乙烯多孔薄膜驻极体的电荷储存稳定性.  , 2002, 51(2): 389-394. doi: 10.7498/aps.51.389
    [20] 张晓青, G.M.SESSLER, 夏钟福, 张冶文. Si基Si3N4/SiO2双层膜驻极体的电荷储存与输运.  , 2001, 50(2): 293-298. doi: 10.7498/aps.50.293
计量
  • 文章访问数:  15713
  • PDF下载量:  544
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-26
  • 修回日期:  2020-06-19
  • 上网日期:  2020-10-19
  • 刊出日期:  2020-10-20

/

返回文章
返回
Baidu
map