搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

改善Te基热电材料与复合电极界面性能

郭敬云 陈少平 樊文浩 王雅宁 吴玉程

引用本文:
Citation:

改善Te基热电材料与复合电极界面性能

郭敬云, 陈少平, 樊文浩, 王雅宁, 吴玉程

Improving interface properties of Te based thermoelectric materials and composite electrodes

Guo Jing-Yun, Chen Shao-Ping, Fan Wen-Hao, Wang Ya-Ning, Wu Yu-Cheng
PDF
HTML
导出引用
  • Te基热电材料以其优异的热电性能得到科研工作者的广泛关注, 但该领域关于器件制备和连接界面方面的研究尚属空白. 本研究基于成分梯度、载流子浓度梯度构成的多元梯度势场对界面粒子传输过程的协同调控机制, 在热电材料Te和电极Fe之间引入β(FeTe)作为阻隔层, 设计制备了Te/β(FeTe)/Fe梯度连接结构, 并对界面新相、接触电阻和机械性能进行了研究. 研究结果表明, 中间合金层β(FeTe)与热电材料和电极材料的界面组织结构致密, 有效阻隔了界面元素间严重的交互扩散. 该β(FeTe)-Te间形成了约40 μm的反应层, β(FeTe)与Fe和Te间的接触电阻分别为4.1和7.54 μΩ·cm2, 剪切强度分别为16.11和15.63 MPa. 时效温度对梯度连接结构的服役寿命和性能影响显著, Te/β(FeTe)/Fe的界面组织在553 K温度下时效15 d, 界面性能保持稳定; 当时效温度升至573 K时, 由于高温下材料的不稳定性, 导致性能随着退火时间的延长急剧下降, 并在10 d之后完全破坏, 这表明其最佳工作温度不得高于553 K. 该梯度连接结构成功实现了抑制界面元素过度扩散、降低界面残余应力以及提升界面工作稳定性和服役寿命等目的, 其设计思路和研究结果对半导体领域器件的制备具有重要借鉴意义.
    Owing to their excellent performances, Te-based thermoelectric materials have been extensively concerned. However little attention has been paid to the bonding interfaces with electrodes, which play an important role in their practical applications. Excessive element mutual diffusion occurs across the bonding interfaces when Te is connected with metallic electrode, such as copper, aluminum, iron, etc, which will impair its transport performance and life especially when they serve in the higher temperature environments. Seeking proper barriers is the key to solving the interface problem. In this work, a gradient bonding structure of Te/FeTe/Fe is prepared in one step by the spark plasma sintering (SPS) method, in which a metallic layer of FeTe, referred to as β(FeTe) phase, is introduced as barrier. The interface microstructure, element distribution, and new phases are analyzed, and the joint properties including contact resistance and shearing strength after being aged are evaluated. The results show that the introduction of β(FeTe) phase can promote the boding of Fe/β(FeTe)/Te and thus inhibiting the excessive element diffusion across the interfaces, which is due to the formation of ε(FeTe2) phase between β(FeTe) phase and Te. The contact resistance of Fe/β(FeTe) and β(FeTe)/Te are 4.1 μΩ·cm2 and 7.54 μΩ·cm2, respectively, and the shearing strength are 16.11 MPa and 15.63 MPa, respectively. The annealing temperature has significant effect on the performance of the gradient bonding structure. It has been indicated that the whole joint still owns good performance after being annealed at 553 K for 15 days, while it decreases sharply when the temperature is increased to 573 K. Hence, the optimal service temperature of Te/β(FeTe)/Fe should not be higher than 553 K. The gradient bonding structure is successfully achieved, thus attaining the purposes of inhibiting interface elements from excessively diffuse, reducing interface residual stress, and improving interface working stability and service life. So the design ideas and research results in this work have great reference significance for the study on semiconductor devices.
      通信作者: 陈少平, sxchenshaoping@163.com
    • 基金项目: 国家级-国家自然科学基金(51775366)
      Corresponding author: Chen Shao-Ping, sxchenshaoping@163.com
    [1]

    He W, Zhang G, Zhang X X, Ji J, Li G Q, Zhao X D 2015 Appl. Energy 143 1Google Scholar

    [2]

    Pothin R, Ayral R M, Berche A, Ziolkowski P, Oppitz G, Jund P 2018 Mater. Res. Bull. 101 90Google Scholar

    [3]

    Yang R Y, Chen S P, Fan W H, Gao X F, Long Y, Wang W X, Munir Z A 2017 J. Alloys Compd. 704 545Google Scholar

    [4]

    Kaszyca K, Schmidt M, Chmielewski M, Pietrzak K, Zybala R 2018 Mater. Today: Proc. 5 10277Google Scholar

    [5]

    Liu W S, Jie Q, Kim H S, Ren Z F 2015 Acta Mater. 87 357Google Scholar

    [6]

    Li F, Huang X Y, Jiang W, Chen L D 2013 J. Electron. Mater. 42 1219Google Scholar

    [7]

    Ferrario A, Battiston S, Boldrini S, Sakamoto T, Miorin E, Famengo A, Miozzo A, Fiameni S, Iida T, Fabrizio M 2015 Mater. Today: Proc. 2 573Google Scholar

    [8]

    Wang X, Wang H C, Su W B, Mehmood F, Zhai J Z, Wang T, Chen T T, Wang C L 2019 Renewable Energy 141 88Google Scholar

    [9]

    An D C, Chen S P, Lu Z X, Li R, Chen W, Fan W H, Wang W X, Wu Y C 2019 ACS Appl. Mater. Interfaces 11 27788Google Scholar

    [10]

    Peng H, Kioussis N, Snyder G J 2014 Phys. Rev. B 89 195206Google Scholar

    [11]

    Qian X, Xiao Y, Zheng L, Qin B C, Zhou Y M, Pei Y L, Yuan B F, Gong S K, Zhao L D 2017 RSC Adv. 7 17682Google Scholar

    [12]

    Arai K, Matsubara M, Sawada Y, Sakamoto T, Kineri T, Kogo Y, Iida T, Nishio K 2012 J. Electron. Mater. 41 1771Google Scholar

    [13]

    Valery V K 2006 Reliability Issues in Electrical Contacts (Boca Raton: CRC Press) pp205−259

    [14]

    Rowe D M 2006 Thermoelectrics Handbook (London: Taylor & Francis Group press) pp13−20

    [15]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333Google Scholar

    [16]

    Hsieh H C, Wang C H, Lin W C, Chakroborty S, Lee T H, Chu H S, Wu A T 2017 J. Alloys Compd. 728 1023Google Scholar

    [17]

    Singh A, Bhattacharya S, Thinaharan C, Aswal D K, Gupta S K, Yakhmi J V, Bhanumurthy K 2009 J. Phys. D: Appl. Phys. 42 015502Google Scholar

    [18]

    Li H Y, Jing H Y, Han Y D, Lu G Q, Xu L Y, Liu T 2016 Mater. Des. 89 604Google Scholar

    [19]

    Ferreres X R, Yamini S A, Nancarrow M, Zhang C 2016 Mater. Des. 107 90Google Scholar

    [20]

    胡晓凯, 张双猛, 赵府, 刘勇, 刘玮书 2019 无机材料学报 34 269Google Scholar

    Hu X K, Zhang S M, Zhao F, Liu Y, Liu W S 2019 J. Inorg. Mater. 34 269Google Scholar

  • 图 1  (a) 热电接头Te/Fe界面接触电阻测试示意图; (b) 梯度连接结构Te/β(FeTe)/Fe抗剪强度测试示意图

    Fig. 1.  Schematic diagram of (a) thermoelectric joint Te/Fe interface contact resistance test and (b) shear strength test of Te/β(FeTe)/Fe gradient structure.

    图 2  (a)热电接头Te/Fe界面背散射电子图片; (b) Fe和(c) Te的元素分布; (d) 热电接头Te/Fe界面新相元素成分谱图

    Fig. 2.  (a) Back scattering image of the Te/Fe interface; elemental mappings of (b) Fe and (c) Te, respectively; (d) elemental composition spectrum of new phase at the Te/Fe interface.

    图 3  Fe-Te二元合金相图(来源: 美国材料信息学会)

    Fig. 3.  Binary phase diagram of Fe-Te (Quoted from the materials information society, ASM Interantional).

    图 4  β(FeTe), ε(FeTe2)的电性能测试结果 (a)电阻率; (b) Seebeck系数

    Fig. 4.  The electrical properties of β(FeTe) and ε(FeTe2): (a) Resistivity; (b) Seebeck coefficient.

    图 5  (a)梯度连接结构Te/FeTe/Fe界面微观组织结构; (b), (c) 梯度连接结构Te/ε(FeTe2)/Fe界面微观组织结构; (d)梯度连接结构Te/β(FeTe)/Fe的EDS线扫

    Fig. 5.  Microstructure of gradient bonding structure: (a) Te/FeTe/Fe interface; (b), (c) Te/ε(FeTe2)/Fe interface; (d) EDS line scanning of Te/β(FeTe)/Fe.

    图 6  梯度连接结构Te/β(FeTe)/Fe界面接触电阻测试示意图

    Fig. 6.  Schematic diagram of Te/β(FeTe)/Fe interface contact resistance test.

    图 7  梯度连接结构Te/β(FeTe)/Fe的β(FeTe)-Te界面断口微观组织形貌和元素成分分布

    Fig. 7.  Microstructure morphology and elemental distribution of the β(FeTe)-Te fracture interface of Te/β(FeTe)/Fe.

    图 8  梯度连接结构Te/β(FeTe)/Fe在553 K下退火不同时间后两界面组织结构图片 (a1), (a2) 0 d; (b1), (b2) 7 d; (c1), (c2) 10 d; (d1), (d2) 15 d

    Fig. 8.  Interface structure pictures of Te/β(FeTe)/Fe after annealing at 553 K for different time: (a1), (a2) 0 d; (b1), (b2) 7 d; (c1), (c2) 10 d; (d1), (d2) 15 d.

    图 9  梯度连接结构Te/FeTe/Fe在573 K下退火10 d后的界面结构图片

    Fig. 9.  Interfacial structure picture of Te/β(FeTe)/Fe after annealing at 573 K for 10 d.

    图 10  梯度连接结构Te/β(FeTe)/Fe在553 K下退火不同时间后界面性能的变化 (a) β(FeTe)-Fe界面; (b) β(FeTe)-Te界面

    Fig. 10.  Changes in interface properties of Te/β(FeTe)/Fe after annealing at 553 K for different time: (a) β(FeTe)-Fe interface; (b) β(FeTe)-Te interface.

    图 11  梯度连接结构Te/β(FeTe)/Fe界面接触电阻率随老化时间和温度的变化曲线 (a), (c) β(FeTe)-Fe界面; (b), (d) β(FeTe)-Te界面

    Fig. 11.  Change of interface resistivity with aging time and temperature: (a), (c) β(FeTe)-Fe interface; (b), (d) β(FeTe)-Te interface

    表 1  梯度连接结构Te/β(FeTe)/Fe和 Te/ε(FeTe2)/Fe区域成分扫描结果

    Table 1.  EDS point scanning results of Te/β(FeTe)/Fe and Fe/ε(FeTe2)/Fe.

    Point numberFe /at.%Te /at.%
    b10100.00
    b229.9270.08
    b350.3049.70
    b4100.000
    b531.0568.95
    b617.1082.90
    下载: 导出CSV

    表 2  β(FeTe)-Te界面断口特征点EDS成分扫描结果

    Table 2.  EDS scanning results of characteristic points of β(FeTe)-Te fracture interface.

    Point numberFe/at.%Te/at.%
    124.6675.34
    260.1739.83
    32.5497.46
    下载: 导出CSV
    Baidu
  • [1]

    He W, Zhang G, Zhang X X, Ji J, Li G Q, Zhao X D 2015 Appl. Energy 143 1Google Scholar

    [2]

    Pothin R, Ayral R M, Berche A, Ziolkowski P, Oppitz G, Jund P 2018 Mater. Res. Bull. 101 90Google Scholar

    [3]

    Yang R Y, Chen S P, Fan W H, Gao X F, Long Y, Wang W X, Munir Z A 2017 J. Alloys Compd. 704 545Google Scholar

    [4]

    Kaszyca K, Schmidt M, Chmielewski M, Pietrzak K, Zybala R 2018 Mater. Today: Proc. 5 10277Google Scholar

    [5]

    Liu W S, Jie Q, Kim H S, Ren Z F 2015 Acta Mater. 87 357Google Scholar

    [6]

    Li F, Huang X Y, Jiang W, Chen L D 2013 J. Electron. Mater. 42 1219Google Scholar

    [7]

    Ferrario A, Battiston S, Boldrini S, Sakamoto T, Miorin E, Famengo A, Miozzo A, Fiameni S, Iida T, Fabrizio M 2015 Mater. Today: Proc. 2 573Google Scholar

    [8]

    Wang X, Wang H C, Su W B, Mehmood F, Zhai J Z, Wang T, Chen T T, Wang C L 2019 Renewable Energy 141 88Google Scholar

    [9]

    An D C, Chen S P, Lu Z X, Li R, Chen W, Fan W H, Wang W X, Wu Y C 2019 ACS Appl. Mater. Interfaces 11 27788Google Scholar

    [10]

    Peng H, Kioussis N, Snyder G J 2014 Phys. Rev. B 89 195206Google Scholar

    [11]

    Qian X, Xiao Y, Zheng L, Qin B C, Zhou Y M, Pei Y L, Yuan B F, Gong S K, Zhao L D 2017 RSC Adv. 7 17682Google Scholar

    [12]

    Arai K, Matsubara M, Sawada Y, Sakamoto T, Kineri T, Kogo Y, Iida T, Nishio K 2012 J. Electron. Mater. 41 1771Google Scholar

    [13]

    Valery V K 2006 Reliability Issues in Electrical Contacts (Boca Raton: CRC Press) pp205−259

    [14]

    Rowe D M 2006 Thermoelectrics Handbook (London: Taylor & Francis Group press) pp13−20

    [15]

    Liu W, Zhang Q, Yin K, Chi H, Zhou X Y, Tang X F, Uher C 2013 J. Solid State Chem. 203 333Google Scholar

    [16]

    Hsieh H C, Wang C H, Lin W C, Chakroborty S, Lee T H, Chu H S, Wu A T 2017 J. Alloys Compd. 728 1023Google Scholar

    [17]

    Singh A, Bhattacharya S, Thinaharan C, Aswal D K, Gupta S K, Yakhmi J V, Bhanumurthy K 2009 J. Phys. D: Appl. Phys. 42 015502Google Scholar

    [18]

    Li H Y, Jing H Y, Han Y D, Lu G Q, Xu L Y, Liu T 2016 Mater. Des. 89 604Google Scholar

    [19]

    Ferreres X R, Yamini S A, Nancarrow M, Zhang C 2016 Mater. Des. 107 90Google Scholar

    [20]

    胡晓凯, 张双猛, 赵府, 刘勇, 刘玮书 2019 无机材料学报 34 269Google Scholar

    Hu X K, Zhang S M, Zhao F, Liu Y, Liu W S 2019 J. Inorg. Mater. 34 269Google Scholar

  • [1] 康亚斌, 袁小朋, 王晓波, 李克伟, 宫殿清, 程旭东. 分层化金属陶瓷光热转换涂层的微结构构筑与热稳定性.  , 2023, 72(5): 057103. doi: 10.7498/aps.72.20221693
    [2] 袁珉慧, 乐文凯, 谈小建, 帅晶. 二维共价键子结构Zintl相热电材料研究及进展.  , 2021, 70(20): 207304. doi: 10.7498/aps.70.20211010
    [3] 赵英浩, 张瑞, 张波萍, 尹阳, 王明军, 梁豆豆. Cu1.8–x Sbx S热电材料的相结构与电热输运性能.  , 2021, 70(12): 128401. doi: 10.7498/aps.70.20201852
    [4] 朱小芹, 胡益丰. Ge50Te50/Zn15Sb85纳米复合多层薄膜在高热稳定性和低功耗相变存储器中的应用.  , 2020, 69(14): 146101. doi: 10.7498/aps.69.20200502
    [5] 王雅宁, 陈少平, 樊文浩, 郭敬云, 吴玉程, 王文先. PbTe基热电接头界面性能.  , 2020, 69(24): 246801. doi: 10.7498/aps.69.20201080
    [6] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究.  , 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [7] 陶颖, 祁宁, 王波, 陈志权, 唐新峰. 氧化铟/聚(3,4-乙烯二氧噻吩)复合材料的微结构及其热电性能研究.  , 2018, 67(19): 197201. doi: 10.7498/aps.67.20180382
    [8] 王鸿翔, 应鹏展, 杨江锋, 陈少平, 崔教林. Mn掺杂后三元黄铜矿结构半导体CuInTe2的缺陷特征与热电性能.  , 2016, 65(6): 067201. doi: 10.7498/aps.65.067201
    [9] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军. PbSe-MnSe纳米复合热电材料的微结构和电热输运性能.  , 2016, 65(10): 107201. doi: 10.7498/aps.65.107201
    [10] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究.  , 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [11] 刘海云, 刘湘涟, 田定琪, 杜正良, 崔教林. 含硫宽禁带Ga2Te3基热电半导体的声电输运特性.  , 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [12] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性.  , 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [13] 闫建成, 何智兵, 阳志林, 陈志梅, 唐永建, 韦建军. 玻璃微球表面辉光等离子体聚合物涂层的热稳定性研究.  , 2010, 59(11): 8005-8009. doi: 10.7498/aps.59.8005
    [14] 张帆, 朱航天, 骆军, 梁敬魁, 饶光辉, 刘泉林. Sb2Te3 纳米结构的制备与表征.  , 2010, 59(10): 7232-7238. doi: 10.7498/aps.59.7232
    [15] 范平, 郑壮豪, 梁广兴, 张东平, 蔡兴民. Sb2Te3热电薄膜的离子束溅射制备与表征.  , 2010, 59(2): 1243-1247. doi: 10.7498/aps.59.1243
    [16] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性.  , 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [17] 沈 祥, 聂秋华, 徐铁峰, 高 媛. Er3+/Yb3+共掺碲钨酸盐玻璃的光谱性质和热稳定性的研究.  , 2005, 54(5): 2379-2384. doi: 10.7498/aps.54.2379
    [18] 吕 强, 荣剑英, 赵 磊, 张红晨, 胡建民, 信江波. 热压工艺参数对n型和p型Bi2Te3基赝三元热电材料电学性能的影响.  , 2005, 54(7): 3321-3326. doi: 10.7498/aps.54.3321
    [19] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究.  , 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [20] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联.  , 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
计量
  • 文章访问数:  7514
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-24
  • 修回日期:  2020-04-15
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-20

/

返回文章
返回
Baidu
map