搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电介质/半导体结构样品电子束感生电流瞬态特性

李维勤 霍志胜 蒲红斌

引用本文:
Citation:

电介质/半导体结构样品电子束感生电流瞬态特性

李维勤, 霍志胜, 蒲红斌

Transient characteristics of electron beam induced current in dielectric and semiconductor sample

Li Wei-Qin, Huo Zhi-Sheng, Pu Hong-Bin
PDF
HTML
导出引用
  • 电子束照射下电介质/半导体样品的电子束感生电流(electron beam induced current, EBIC)是其电子显微检测的重要手段. 结合数值模拟和实验测量, 研究了高能电子束辐照下SiO2/Si薄膜的瞬态EBIC特性. 基于Rutherford模型和快二次电子模型研究电子的散射过程, 基于电流连续性方程计算电荷的输运、俘获和复合过程, 获得了电荷分布、EBIC和透射电流瞬态特性以及束能和束流对它们的影响. 结果表明, 由于电子散射效应, 自由电子密度沿入射方向逐渐减小. 由于二次电子出射, 净电荷密度呈现近表面为正、内部为负的特性, 空间电场在表面附近为正而在样品内部为负, 导致一些电子输运到基底以及一些出射二次电子返回表面. SiO2与Si界面处俘获电子导致界面附近负电荷密度高于周围区域. 随电子束照射样品内部净电荷密度逐渐降低, 带电强度减弱. 同时, 负电荷逐渐向基底输运, EBIC和样品电流逐渐增大, 电场强度逐渐减小. 由于样品带电强度较弱, 表面出射电流和透射电流随照射基本保持恒定. EBIC、透射电流及表面出射电流均随束流呈现近似正比例关系. 对于本文SiO2/Si薄膜, 透射电流随束能的升高逐渐增大并接近于束流值, EBIC在束能约15 keV时呈现极大值.
    The electron beam induced current (EBIC) characteristics of dielectric/semiconductor thin films under the electron beam (e-beam) irradiation is the important means of implementing the electron microscopic detection. The transient EBIC characteristics of the SiO2/Si thin film irradiated by a high-energy e-beam are investigated by combining the numerical simulation and the experimental measurement. The scattering process of electrons is simulated by the Rutherford scattering model and the fast secondary electron model, and the charge transport, trapping and the recombination process are calculated by the current continuity equation and the Poisson equation. The transient charge distribution, EBIC and the transmission current are obtained, and influence of the beam current and the beam energy on them are analyzed. The results show that due to the electron scattering effect, the free electron density decreases gradually along the incident direction. The net charge density near the surface is positive and negative along the incident direction because of secondary electrons (SEs) emitted from the surface, and therefore the electric field intensity is positive near the surface and negative inside sample, which causes some electrons to be transported to the substrate and some SEs return to the surface. The negative charge density at the SiO2/Si interface is higher than that in the nearby region because some electrons are trapped by the interface trap. With the decrease of the net charge density with e-beam irradiation, the charging intensity decreases gradually. Meanwhile, electrons are gradually transported to the substrate, and consequently EBIC and the sample current increase and the electric field intensity decreases with e-beam irradiation. However, due to the weak charging intensity, the surface emission current and the transmission current remain almost invariant with e-beam irradiation. The EBIC, the transmission current and the surface emission current are approximately proportional to the beam current. For the SiO2/Si thin film in this work, the transmission current increases gradually to the beam current value with the increase of the beam energy, and the EBIC presents a maximum value at the beam energy of about 15 keV.
      通信作者: 李维勤, wqlee@126.com
    • 基金项目: 省部级-陕西省自然科学基金项目(2019JM-340)
      Corresponding author: Li Wei-Qin, wqlee@126.com
    [1]

    Zhang M, Wang X X, Cao W Q, Yuan J, Cao M S 2019 Adv. Opt. Mater. 7 1900689Google Scholar

    [2]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [3]

    Ben Ammar L, Fakhfakh S, Jbara O, Rondot S 2017 J. Microsc. 265 322Google Scholar

    [4]

    Cazaux J 2010 J. Electron. Spectrosc. Relat. Phenom. 176 58Google Scholar

    [5]

    Bai M, Pease F 2004 J. Vac. Sci. Technol. B 22 2907Google Scholar

    [6]

    Ben Ammar L, Fakhfakh S, Jbara O, Rondot S, Hadjadj A 2017 Micron 98 39Google Scholar

    [7]

    Wong W K, Rau E I, Thong J T L 2004 Ultramicroscopy 101 183Google Scholar

    [8]

    Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15

    [9]

    Hoskins B D, Adam G C, Strelcov E, Zhitenev N, Kolmakov A, Strukov D B, McClelland J J 2017 Nat. Commun. 8 1972Google Scholar

    [10]

    Fitting H J, Touzin M 2011 J. Appl. Phys. 110 044111Google Scholar

    [11]

    孙祥乐, 高思伟, 毛渲, 龚晓霞, 余黎静, 宋欣波, 柴圆媛, 尚发兰, 信思树, 太云见 2019 红外技术 41 742

    Sun X L, Gao S W, Mao X, Gong X X, Yu L J, Song X B, Chai Y Y, Shang F L, Xin S S, Tai Y J 2019 Infrared Technology 41 742

    [12]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst Solids 358 1157Google Scholar

    [13]

    封国宝, 曹猛, 崔万照, 李军, 刘纯亮, 王芳 2017 66 067901Google Scholar

    Feng G B, Cao M, Cui W Z, Li J, Liu C L, Wang F 2017 Acta Phys. Sin. 66 067901Google Scholar

    [14]

    李维勤, 郝杰, 张海波 2015 64 086801Google Scholar

    Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801Google Scholar

    [15]

    白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪 2018 67 037902Google Scholar

    Bai C J, Feng G B, Cui W Z, He Y N, Zhang W, Hu S G, Ye M, Hu T C, Huang G S, Wang Q 2018 Acta Phys. Sin. 67 037902Google Scholar

    [16]

    Cornet N, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Touzin M, Fitting H J 2008 J. Appl. Phys. 103 064110Google Scholar

    [17]

    Cazaux J 2012 J. Electron Microsc. 61 261Google Scholar

    [18]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443Google Scholar

    [19]

    李维勤, 刘丁, 张海波 2014 63 227303Google Scholar

    Li W Q, Liu D, Zhang H B 2014 Acta Phys. Sin. 63 227303Google Scholar

    [20]

    翁明, 胡天存, 曹猛, 徐伟军 2015 64 157901Google Scholar

    Weng M, Hu T C, Cao M, Xu W J 2015 Acta Phys. Sin. 64 157901Google Scholar

    [21]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press) p27

    [22]

    Touzin M, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Fitting H J 2006 J. Appl. Phys. 99 114110Google Scholar

    [23]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X, Yuan J 2019 Ann. Phys. 531 1800390Google Scholar

    [24]

    Buchanan D A, Fischetti M V, Dimaria D J 1991 Phys. Rev. B 43 1471Google Scholar

    [25]

    Gushterov A, Simeonov S 2004 Vacuum 76 315Google Scholar

    [26]

    Rau E I 2008 Appl. Surf. Sci. 254 2110Google Scholar

  • 图 1  电子束与样品相互作用产生的各类电流示意图

    Fig. 1.  Schematic of currents generated by the interaction of e-beams with samples.

    图 2  实验装置示意图

    Fig. 2.  Schematic diagram of the experimental device.

    图 3  电子总产额的模拟(直线)和实验(方块)结果

    Fig. 3.  Simulated (lines) and experimental (squares) results of total electron yield.

    图 4  自由电子密度N(t)沿入射方向分布

    Fig. 4.  Simulated free charge densities N(t) along the incident direction.

    图 5  净电荷密度(P(t) – N(t))沿入射方向分布

    Fig. 5.  Simulated net space densities (P(t) – N(t)) along the incident direction.

    图 6  (a)空间电位V(t)和(b)空间电场F(t)沿入射方向分布模拟结果

    Fig. 6.  Simulated (a) space potentials V(t) and (b) space fields F(t) along the incident direction.

    图 7  有效出射电流II的模拟(直线)和测量(方块)结果

    Fig. 7.  Simulated (line) and experimental (squares) effective emission currents II.

    图 8  (a) IEBICITE的模拟结果; (b) IS的模拟(直线)和测量(方块)结果

    Fig. 8.  (a) Simulated IEBIC and ITE; (b) simulated (line) and experimental (squares) IS.

    图 9  模拟得到的不同束流时电子束感生电流IEBIC的稳态结果

    Fig. 9.  Simulated IEBIC in the steady state under the different values of beam current IB.

    图 10  模拟得到的不同束能时透射电流ITE的时变特性

    Fig. 10.  Simulated ITE as a function of the irradiation time in the different beam energies EB.

    图 11  模拟得到的不同束能时IEBIC的时变特性

    Fig. 11.  Simulated IEBIC as a function of the irradiation time in the different beam energies EB.

    表 1  电子散射过程参数默认设置

    Table 1.  Default values of parameters in the scattering process.

    参数SiO2Si
    ρ/g·cm–32.262.32
    $\bar A $/g·mole–12028.1
    $\bar J $/keV0.1390.173
    $\bar Z $1014
    下载: 导出CSV

    表 2  实验参数默认设置

    Table 2.  Default values of parameters.

    束能EB/keV束流IB/nA扫描区域/mm2扫描周期/s
    10, 15, 20, 301.61 × 11.2
    下载: 导出CSV

    表 3  数值计算参数默认设置

    Table 3.  Default values of parameters.

    参数取值
    束能EB/keV10
    束流IB/nA1.6
    体缺陷密度/cm–31017
    界面俘获密度/cm–21014
    下载: 导出CSV
    Baidu
  • [1]

    Zhang M, Wang X X, Cao W Q, Yuan J, Cao M S 2019 Adv. Opt. Mater. 7 1900689Google Scholar

    [2]

    Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y, Yuan J 2019 Adv. Funct. Mater. 29 1807398Google Scholar

    [3]

    Ben Ammar L, Fakhfakh S, Jbara O, Rondot S 2017 J. Microsc. 265 322Google Scholar

    [4]

    Cazaux J 2010 J. Electron. Spectrosc. Relat. Phenom. 176 58Google Scholar

    [5]

    Bai M, Pease F 2004 J. Vac. Sci. Technol. B 22 2907Google Scholar

    [6]

    Ben Ammar L, Fakhfakh S, Jbara O, Rondot S, Hadjadj A 2017 Micron 98 39Google Scholar

    [7]

    Wong W K, Rau E I, Thong J T L 2004 Ultramicroscopy 101 183Google Scholar

    [8]

    Zhang H B, Li W Q, Wu D W 2009 J. Electron Microsc. 58 15

    [9]

    Hoskins B D, Adam G C, Strelcov E, Zhitenev N, Kolmakov A, Strukov D B, McClelland J J 2017 Nat. Commun. 8 1972Google Scholar

    [10]

    Fitting H J, Touzin M 2011 J. Appl. Phys. 110 044111Google Scholar

    [11]

    孙祥乐, 高思伟, 毛渲, 龚晓霞, 余黎静, 宋欣波, 柴圆媛, 尚发兰, 信思树, 太云见 2019 红外技术 41 742

    Sun X L, Gao S W, Mao X, Gong X X, Yu L J, Song X B, Chai Y Y, Shang F L, Xin S S, Tai Y J 2019 Infrared Technology 41 742

    [12]

    Fakhfakh S, Jbara O, Rondot S, Hadjadj A, Fakhfakh Z 2012 J. Non-Cryst Solids 358 1157Google Scholar

    [13]

    封国宝, 曹猛, 崔万照, 李军, 刘纯亮, 王芳 2017 66 067901Google Scholar

    Feng G B, Cao M, Cui W Z, Li J, Liu C L, Wang F 2017 Acta Phys. Sin. 66 067901Google Scholar

    [14]

    李维勤, 郝杰, 张海波 2015 64 086801Google Scholar

    Li W Q, Hao J, Zhang H B 2015 Acta Phys. Sin. 64 086801Google Scholar

    [15]

    白春江, 封国宝, 崔万照, 贺永宁, 张雯, 胡少光, 叶鸣, 胡天存, 黄光荪, 王琪 2018 67 037902Google Scholar

    Bai C J, Feng G B, Cui W Z, He Y N, Zhang W, Hu S G, Ye M, Hu T C, Huang G S, Wang Q 2018 Acta Phys. Sin. 67 037902Google Scholar

    [16]

    Cornet N, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Touzin M, Fitting H J 2008 J. Appl. Phys. 103 064110Google Scholar

    [17]

    Cazaux J 2012 J. Electron Microsc. 61 261Google Scholar

    [18]

    Li W Q, Mu K, Xia R H 2011 Micron 42 443Google Scholar

    [19]

    李维勤, 刘丁, 张海波 2014 63 227303Google Scholar

    Li W Q, Liu D, Zhang H B 2014 Acta Phys. Sin. 63 227303Google Scholar

    [20]

    翁明, 胡天存, 曹猛, 徐伟军 2015 64 157901Google Scholar

    Weng M, Hu T C, Cao M, Xu W J 2015 Acta Phys. Sin. 64 157901Google Scholar

    [21]

    Joy D C 1995 Monte Carlo Modeling for Electron Microscopy and Microanalysis (New York: Oxford University Press) p27

    [22]

    Touzin M, Goeuriot D, Guerret-Piécourt C, Juvé D, Tréheux D, Fitting H J 2006 J. Appl. Phys. 99 114110Google Scholar

    [23]

    Cao M S, Shu J C, Wang X X, Wang X, Zhang M, Yang H J, Fang X, Yuan J 2019 Ann. Phys. 531 1800390Google Scholar

    [24]

    Buchanan D A, Fischetti M V, Dimaria D J 1991 Phys. Rev. B 43 1471Google Scholar

    [25]

    Gushterov A, Simeonov S 2004 Vacuum 76 315Google Scholar

    [26]

    Rau E I 2008 Appl. Surf. Sci. 254 2110Google Scholar

  • [1] 廖晶晶, 康琦, 罗飞, 蔺福军. 温差条件下包含手征活性粒子的封闭圆环的输运.  , 2023, 72(3): 030501. doi: 10.7498/aps.72.20221772
    [2] 邹云鹏, 陈锡熊, 陈伟. 临界梯度模型的优化及集成模拟中高能量粒子模块的搭建.  , 2023, 72(21): 215206. doi: 10.7498/aps.72.20230681
    [3] 沈星晨, 刘洋, 陈淇, 吕航, 徐海峰. 超快强激光场中原子分子的里德伯态激发.  , 2022, 71(23): 233202. doi: 10.7498/aps.71.20221258
    [4] 霍志胜, 蒲红斌, 李维勤. 高能透射电子束照射聚合物薄膜的带电效应.  , 2019, 68(23): 230201. doi: 10.7498/aps.68.20191112
    [5] 张婷婷, 成蒙, 杨蓉, 张广宇. 锯齿形石墨烯反点网络加工与输运性质研究.  , 2017, 66(21): 216103. doi: 10.7498/aps.66.216103
    [6] 封国宝, 王芳, 曹猛. 电子辐照聚合物带电特性多参数共同作用的数值模拟.  , 2015, 64(22): 227901. doi: 10.7498/aps.64.227901
    [7] 闫青, 贾维国, 于宇, 张俊萍, 门克内木乐. 拉曼增益对高双折射光纤中暗孤子俘获的影响.  , 2015, 64(18): 184211. doi: 10.7498/aps.64.184211
    [8] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究.  , 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [9] 史宏云, 陈贺胜. 单电子在含有双能级原子的空腔中的输运行为.  , 2012, 61(2): 020301. doi: 10.7498/aps.61.020301
    [10] 石玗, 郭朝博, 黄健康, 樊丁. 脉冲电流作用下TIG电弧的数值分析.  , 2011, 60(4): 048102. doi: 10.7498/aps.60.048102
    [11] 蔡利兵, 王建国, 朱湘琴. 强直流场介质表面次级电子倍增效应的数值模拟研究.  , 2011, 60(8): 085101. doi: 10.7498/aps.60.085101
    [12] 胡玥, 饶海波. 单层有机器件的电子传输特性的数值模拟.  , 2009, 58(5): 3474-3478. doi: 10.7498/aps.58.3474
    [13] 李维勤, 张海波. 低能电子束照射接地绝缘薄膜的负带电过程.  , 2008, 57(5): 3219-3229. doi: 10.7498/aps.57.3219
    [14] 贺梦冬, 龚志强. 多层异质结构中的声学声子输运.  , 2007, 56(3): 1415-1421. doi: 10.7498/aps.56.1415
    [15] 王光昶, 郑志坚, 谷渝秋, 陈 涛, 张 婷. 利用渡越辐射研究超热电子在固体靶中的输运过程.  , 2007, 56(2): 982-987. doi: 10.7498/aps.56.982
    [16] 胡 旻, 祝大军, 刘盛纲. 强流相对论电子束双腔纵向自调制研究.  , 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [17] 王本阳, 千正男, 隋 郁, 刘玉强, 苏文辉, 张 铭, 柳祝红, 刘国栋, 吴光恒. Heusler合金Cu2VAl磁性及输运性质的研究.  , 2005, 54(7): 3386-3390. doi: 10.7498/aps.54.3386
    [18] 廖高华, 翁甲强, 成丽春, 方锦清. 束晕-混沌控制中的粒子跟踪模拟研究.  , 2005, 54(1): 35-42. doi: 10.7498/aps.54.35
    [19] 袁行球, 陈重阳, 李 辉, 赵太泽, 郭文康, 须 平. 电子束离子阱中高价态离子演化过程的数值模拟.  , 2003, 52(8): 1906-1910. doi: 10.7498/aps.52.1906
    [20] 丁伯江, 匡光力, 刘岳修, 沈慰慈, 俞家文, 石跃江. 低杂波电流驱动的数值模拟.  , 2002, 51(11): 2556-2561. doi: 10.7498/aps.51.2556
计量
  • 文章访问数:  8357
  • PDF下载量:  116
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-10
  • 修回日期:  2019-12-18
  • 刊出日期:  2020-03-20

/

返回文章
返回
Baidu
map