-
体点导热问题是电子器件散热优化方面的基础问题之一, 已有研究大多建立在傅里叶导热定律的基础上, 但随着电子器件的特征尺度降低到微纳米量级, 导热优化需要考虑非傅里叶效应. 本文结合声子玻尔兹曼方程的数值解和对声子平均自由程进行插值的固体各向同性材料惩罚方法, 发展了微纳米尺度下弹道-扩散导热的拓扑优化方法. 在弹道-扩散导热机制下, 体点导热的拓扑优化得到的材料分布明显不同于扩散导热下的树状分布, 且会随努森数的变化而变化, 与拓扑优化的插值方式和声子弹道输运有关. 随着弹道效应的增强, 尺寸效应使得材料分布中微小结构的等效热导率低于粗壮结构, 因而拓扑优化结果朝着增多粗壮结构、减少微小结构的方向发展. 弹道效应足够强时, 填充材料聚集在低温边界附近, 主干和枝合并, 呈团状分布.
-
关键词:
- 体点导热 /
- 拓扑优化 /
- 微纳尺度 /
- 声子玻尔兹曼输运方程
The volume-to-point (VP) heat conduction problem is one of the fundamental problems of cooling for electronic devices. The existed reports about the VP problem are mainly based on the Fourier’s law which works well at the macroscopic scale. However, the length scale of modern electronic devices has reduced to micro- and nano-scale, at which optimization methods that are capable of dealing with the non-Fourier heat conduction are desired now. In this paper, phonon Boltzmann transport equation (BTE) and solid isotropic material with penalization (SIMP) method are coupled to develop a topology optimization method for ballistic-diffusive heat conduction. Phonon BTE is transformed into equation of phonon radiative transport, which is solved by the discrete ordinate method. To realize the topology optimization, SIMP method is adopted to penalize the phonon extinction coefficient, which equals to the reciprocal of phonon mean-free-path, and an explicit constraint on the global gradient of the nominal material density is used to ensure the solutions being well-posed and mesh-independent. By using the developed topology optimization method, it is found that the optimal material distributions for the VP problem in ballistic-diffusive heat conduction significantly deviate from the traditional tree-like structure obtained in diffusive heat conduction, and the results vary with the Knudsen number (Kn). This is related to the different coefficient interpolation ways in the SIMP method and phonon ballistic transport. When Kn → 0, instead of converging to the conventional tree-like structure which fully stretches into the interior zone, the new method gradually produces the result obtained by the topology optimization which interpolates the reciprocal of the thermal conductivity in diffusive heat conduction. As Kn increases, the high thermal-conductive filling materials show a trend to gather around the low-temperature boundary, and there are more thick and strong trunk structures, less tiny and thin branch structures in the optimized material distributions. In addition, the ratio of the optimized average temperature to the value of the uniform material distribution$\left( {T_{{\rm{ave}},{\rm{opt}}}^{\rm{*}}/T_{{\rm{ave}},{\rm{uni}}}^{\rm{*}}} \right)$ also increases. The dependence of the topology optimization results on Kn can be attributed to the size effect of the thermal conductivity caused by phonon ballistic transport. In the diffusive heat conduction, filling materials with different length scales have the same efficiency to build high thermal-conductive channels. However, with ballistic effect enhancing, size effect makes the effective thermal conductivities of the branch structure lower than those of the trunk structure, as the former is smaller than the latter. As a result, the branch structures are less efficient compared with the trunk structures in terms of building high thermal-conductive channels, and the optimal material distributions have more trunk structures and fewer branch structures. When the ballistic effect becomes significant enough, say at Kn = 0.1, the topology optimization gets a dough-like material distribution in which branches merge into trunks. The proposed topology optimization method have the potential to provide guidance in designing nanoscale electronic devices for improving the heat dissipation capability.-
Keywords:
- volume-to-point heat conduction problem /
- topology optimization /
- micro- and nano-scale /
- phonon Boltzmann transport equation
[1] Bagnall K R, Wang E N 2018 IEEE Trans. Comp. Pack. Man. 8 606
[2] Ahmed H E, Salman B H, Kherbeet A S, Ahmed M I 2018 Int. J. Heat Mass Transf. 118 129
Google Scholar
[3] Narendran N, Gu Y, Freyssinier J P, Yu H, Deng L 2004 J. Cryst. Growth 268 449
Google Scholar
[4] Pop E 2010 Nano Res. 3 147
Google Scholar
[5] Garimella S V, Persoons T, Weibel J A, Gektin V 2017 IEEE Trans. Comp. Pack. Man. 7 1191
[6] Hua Y C, Li H L, Cao B Y 2019 IEEE Trans. Electron Dev. 66 3296
[7] Yang M, Cao B Y 2019 Appl. Therm. Eng. 159 113896
Google Scholar
[8] Bejan A 1997 Int. J. Heat Mass Transf. 40 799
Google Scholar
[9] Cheng X G, Li Z X, Guo Z Y 2003 Sci. China: Technol. Sci. 46 296
[10] Gersborg-Hansen A, Bendsøe M P, Sigmund O 2006 Struct. Multidiscip. O. 31 251
Google Scholar
[11] Zhang Y C, Liu S T 2008 Heat Mass Transf. 44 1217
Google Scholar
[12] Dirker J, Meyer J P 2013 J. Heat Transf. 135 111010
Google Scholar
[13] Dbouk T 2017 Appl. Therm. Eng. 112 841
Google Scholar
[14] Xu X H, Liang X G, Ren J X 2007 Int. J. Heat Mass Transf. 50 1675
Google Scholar
[15] Sigmund O, Maute K 2013 Struct. Multidiscip. O. 48 1031
Google Scholar
[16] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A 2014 Appl. Phys. Rev. 1 11305
Google Scholar
[17] Volz S, Shiomi J, Nomura M, Miyazaki K 2016 J. Therm. Sci. Tech.-Jpn 11 T1
Google Scholar
[18] Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16
[19] Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 21
Google Scholar
[20] Guo Z Y 2018 ES Energy Environ. 1 4
[21] Lu Z X, Ruan X L 2019 ES Energy Environ. 4 5
[22] Yao W J, Cao B Y 2016 Phys. Lett. A 380 2105
Google Scholar
[23] Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford: Clarendon Press) pp1–51
[24] Chen G 2001 Phys. Rev. Lett. 86 2297
Google Scholar
[25] Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transf. 78 755
Google Scholar
[26] Hua Y C, Cao B Y 2016 Int. J. Therm. Sci. 101 126
Google Scholar
[27] Li H L, Cao B Y 2019 Nanoscale Microscale Thermophys. Eng. 23 10
Google Scholar
[28] Li B W, Wang J 2003 Phys. Rev. Lett. 91 44301
Google Scholar
[29] Schleeh J, Mateos J, Íñiguez-de-la-Torre I, Wadefalk N, Nilsson P A, Grahn J, Minnich A J 2014 Nat. Mater. 14 187
[30] Hua Y C, Cao B Y 2017 Nanoscale Microscale Thermophys. Eng. 3 159
[31] Li H L, Hua Y C, Cao B Y 2018 Int. J. Heat Mass Transf. 127 1014
[32] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936
Google Scholar
[33] Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 23101
Google Scholar
[34] Chen X K, Liu J, Peng Z H, Du D, Chen K Q 2017 Appl. Phys. Lett. 110 91907
Google Scholar
[35] Xie G F, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417
[36] Kazan M, Guisbiers G, Pereira S, Correia M R, Masri P, Bruyant A, Volz S, Royer P 2010 J. Appl. Phys. 107 83503
Google Scholar
[37] Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005
Google Scholar
[38] Evgrafov A, Maute K, Yang R G, Dunn M L 2009 Int. J. Numer. Meth. Eng. 77 285
Google Scholar
[39] Murthy J Y, Mathur S R 2002 J. Heat Transf. 124 1176
Google Scholar
[40] Narumanchi S V, Murthy J Y, Amon C H 2003 J. Heat Transf. 125 896
Google Scholar
[41] Hamian S, Yamada T, Faghri M, Park K 2015 Int. J. Heat Mass Transf. 80 781
Google Scholar
[42] Majumdar A 1993 J. Heat Transf. 115 7
Google Scholar
[43] Chen G 1998 Phys. Rev. B 57 14958
Google Scholar
[44] Sobolev S L 2018 Phys. Rev. E 97 22122
Google Scholar
[45] 华钰超, 董源, 曹炳阳 2013 62 244401
Google Scholar
Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401
Google Scholar
[46] Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transf. 92 995
Google Scholar
[47] Peterson R B 1994 J. Heat Transf. 116 815
Google Scholar
[48] 杜建镔 2015 结构优化及其在振动和声学设计中的应用 (北京: 清华大学出版社) 第115页
Du J B 2015 Structural Optimization and Its Applications in Vibration and Acoustic Designs (Beijing: Tsinghua University Press) p115 (in Chinese)
[49] Bendsøe M P 1989 Struct. Optimization 1 193
Google Scholar
[50] Sigmund O, Petersson J 1998 Struct. Optimization 16 68
Google Scholar
[51] Zhang Y C, Liu S T 2008 Prog. Nat. Sci. 18 665
Google Scholar
[52] Petersson J, Sigmund O 1998 Int. J. Numer. Meth. Eng. 41 1417
Google Scholar
[53] Bendsoe M P, Sigmund O 2004 Topology Optimization: Theory, Methods, and Applications (Berlin: Springer) p17
[54] Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359
Google Scholar
[55] Hua Y C, Cao B Y 2018 J. Appl. Phys. 123 114304
Google Scholar
[56] Alaili K, Ordonez-Miranda J, Ezzahri Y 2018 Int. J. Therm. Sci. 131 40
Google Scholar
-
表 1 不同材料分布在不同努森数下对应的无量纲温度平均值
Table 1. The average dimensionless temperature of different material distributions at different Knudsen numbers.
Kn $T_{{\rm{ave}}}^*$(括号内数据为$T_{{\rm{ave}}}^*/T_{{\rm{ave}},{\rm{uni}}}^*$) 均匀分布 分布1 分布2 分布3 分布4 分布5 0.002 0.98(100.0%) 0.33 (33.7%) 0.21 (21.4%) 0.11 (11.2%) 0.12 (12.2%) 0.21 (21.4%) 0.01 1.07(100.0%) 0.57 (53.2%) 0.41(38.3%) 0.30 (28.0%) 0.29 (27.1%) 0.33 (30.8%) 0.1 2.29(100.0%) 1.97 (86.0%) 1.84 (80.3%) 1.64 (71.6%) 1.62 (70.7%) 1.60 (69.9%) 注: 分布1和2分别是扩散导热条件下插值k的拓扑优化结果、插值${k^{ - 1}}$的拓扑优化结果, 分布3—5分别是弹道-扩散导热条件下$Kn$为0.002, 0.01, 0.1时的拓扑优化结果. -
[1] Bagnall K R, Wang E N 2018 IEEE Trans. Comp. Pack. Man. 8 606
[2] Ahmed H E, Salman B H, Kherbeet A S, Ahmed M I 2018 Int. J. Heat Mass Transf. 118 129
Google Scholar
[3] Narendran N, Gu Y, Freyssinier J P, Yu H, Deng L 2004 J. Cryst. Growth 268 449
Google Scholar
[4] Pop E 2010 Nano Res. 3 147
Google Scholar
[5] Garimella S V, Persoons T, Weibel J A, Gektin V 2017 IEEE Trans. Comp. Pack. Man. 7 1191
[6] Hua Y C, Li H L, Cao B Y 2019 IEEE Trans. Electron Dev. 66 3296
[7] Yang M, Cao B Y 2019 Appl. Therm. Eng. 159 113896
Google Scholar
[8] Bejan A 1997 Int. J. Heat Mass Transf. 40 799
Google Scholar
[9] Cheng X G, Li Z X, Guo Z Y 2003 Sci. China: Technol. Sci. 46 296
[10] Gersborg-Hansen A, Bendsøe M P, Sigmund O 2006 Struct. Multidiscip. O. 31 251
Google Scholar
[11] Zhang Y C, Liu S T 2008 Heat Mass Transf. 44 1217
Google Scholar
[12] Dirker J, Meyer J P 2013 J. Heat Transf. 135 111010
Google Scholar
[13] Dbouk T 2017 Appl. Therm. Eng. 112 841
Google Scholar
[14] Xu X H, Liang X G, Ren J X 2007 Int. J. Heat Mass Transf. 50 1675
Google Scholar
[15] Sigmund O, Maute K 2013 Struct. Multidiscip. O. 48 1031
Google Scholar
[16] Cahill D G, Braun P V, Chen G, Clarke D R, Fan S, Goodson K E, Keblinski P, King W P, Mahan G D, Majumdar A 2014 Appl. Phys. Rev. 1 11305
Google Scholar
[17] Volz S, Shiomi J, Nomura M, Miyazaki K 2016 J. Therm. Sci. Tech.-Jpn 11 T1
Google Scholar
[18] Bao H, Chen J, Gu X K, Cao B Y 2018 ES Energy Environ. 1 16
[19] Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q, Zhang G 2018 npj Comput. Mater. 4 21
Google Scholar
[20] Guo Z Y 2018 ES Energy Environ. 1 4
[21] Lu Z X, Ruan X L 2019 ES Energy Environ. 4 5
[22] Yao W J, Cao B Y 2016 Phys. Lett. A 380 2105
Google Scholar
[23] Ziman J M 2001 Electrons and Phonons: the Theory of Transport Phenomena in Solids (Oxford: Clarendon Press) pp1–51
[24] Chen G 2001 Phys. Rev. Lett. 86 2297
Google Scholar
[25] Hua Y C, Cao B Y 2014 Int. J. Heat Mass Transf. 78 755
Google Scholar
[26] Hua Y C, Cao B Y 2016 Int. J. Therm. Sci. 101 126
Google Scholar
[27] Li H L, Cao B Y 2019 Nanoscale Microscale Thermophys. Eng. 23 10
Google Scholar
[28] Li B W, Wang J 2003 Phys. Rev. Lett. 91 44301
Google Scholar
[29] Schleeh J, Mateos J, Íñiguez-de-la-Torre I, Wadefalk N, Nilsson P A, Grahn J, Minnich A J 2014 Nat. Mater. 14 187
[30] Hua Y C, Cao B Y 2017 Nanoscale Microscale Thermophys. Eng. 3 159
[31] Li H L, Hua Y C, Cao B Y 2018 Int. J. Heat Mass Transf. 127 1014
[32] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z 2012 Science 338 936
Google Scholar
[33] Chen X K, Xie Z X, Zhou W X, Tang L M, Chen K Q 2016 Appl. Phys. Lett. 109 23101
Google Scholar
[34] Chen X K, Liu J, Peng Z H, Du D, Chen K Q 2017 Appl. Phys. Lett. 110 91907
Google Scholar
[35] Xie G F, Ding D, Zhang G 2018 Adv. Phys. X 3 1480417
[36] Kazan M, Guisbiers G, Pereira S, Correia M R, Masri P, Bruyant A, Volz S, Royer P 2010 J. Appl. Phys. 107 83503
Google Scholar
[37] Ju Y S, Goodson K E 1999 Appl. Phys. Lett. 74 3005
Google Scholar
[38] Evgrafov A, Maute K, Yang R G, Dunn M L 2009 Int. J. Numer. Meth. Eng. 77 285
Google Scholar
[39] Murthy J Y, Mathur S R 2002 J. Heat Transf. 124 1176
Google Scholar
[40] Narumanchi S V, Murthy J Y, Amon C H 2003 J. Heat Transf. 125 896
Google Scholar
[41] Hamian S, Yamada T, Faghri M, Park K 2015 Int. J. Heat Mass Transf. 80 781
Google Scholar
[42] Majumdar A 1993 J. Heat Transf. 115 7
Google Scholar
[43] Chen G 1998 Phys. Rev. B 57 14958
Google Scholar
[44] Sobolev S L 2018 Phys. Rev. E 97 22122
Google Scholar
[45] 华钰超, 董源, 曹炳阳 2013 62 244401
Google Scholar
Hua Y C, Dong Y, Cao B Y 2013 Acta Phys. Sin. 62 244401
Google Scholar
[46] Hua Y C, Cao B Y 2016 Int. J. Heat Mass Transf. 92 995
Google Scholar
[47] Peterson R B 1994 J. Heat Transf. 116 815
Google Scholar
[48] 杜建镔 2015 结构优化及其在振动和声学设计中的应用 (北京: 清华大学出版社) 第115页
Du J B 2015 Structural Optimization and Its Applications in Vibration and Acoustic Designs (Beijing: Tsinghua University Press) p115 (in Chinese)
[49] Bendsøe M P 1989 Struct. Optimization 1 193
Google Scholar
[50] Sigmund O, Petersson J 1998 Struct. Optimization 16 68
Google Scholar
[51] Zhang Y C, Liu S T 2008 Prog. Nat. Sci. 18 665
Google Scholar
[52] Petersson J, Sigmund O 1998 Int. J. Numer. Meth. Eng. 41 1417
Google Scholar
[53] Bendsoe M P, Sigmund O 2004 Topology Optimization: Theory, Methods, and Applications (Berlin: Springer) p17
[54] Svanberg K 1987 Int. J. Numer. Meth. Eng. 24 359
Google Scholar
[55] Hua Y C, Cao B Y 2018 J. Appl. Phys. 123 114304
Google Scholar
[56] Alaili K, Ordonez-Miranda J, Ezzahri Y 2018 Int. J. Therm. Sci. 131 40
Google Scholar
计量
- 文章访问数: 10626
- PDF下载量: 182
- 被引次数: 0