-
Perovskite light emitting diodes exhibit the advantages of high color purity, tunable wavelength and low producing cost. Considering these superiorities, one regards perovskite light emitting diodes as very promising candidates for solid state lighting and panel displaying. Human eyes are very sensitive to green light, thus green perovskite light emitting diodes receive the most attention from researchers. Since the advent of the very first green perovskite light emitting diode, the external quantum efficiency has climbed from only 0.1% to over 20%. In this review, we mainly discuss the history of green perovskite light emitting diodes, the basic concepts of perovskite materials and green perovskite light emitting diodes, and the common methods to improve the efficiency of green perovskite light emitting diodes. The bandgap of bromide perovskite is about 2.3 eV, which is located just on a green light wavelength scale and thus becomes the suitable emitting layer material for green emission. There are mainly two types of device structures, i.e. regular format and inverted format. The whole working process of green perovskite light emitting diodes can be divided into two stages, i.e. the injection and recombination of charge carriers. One engineers the energy levels of different layers to improve the injection of charge carriers. They also raise up the strategy so-called surface passivation to reduce the defect density at the interface in order to avoid the quenching phenomenon. One usually inserts a buffering layer to realize the surface passivation. Besides, perovskites possess very small exciton binding energy, which is at the same order of magnitudes as the kinetic energy at room temperature. Charge carriers become free in this case, which will severely reduce the radiation recombination probability due to the non-radiation recombination process such as Shockley-Read-Hall effect and Auger recombination. To solve the problem, people fabricate three types of perovskites, namely quasi two-dimensional perovskite, perovskite quantum dot, and perovskite nanocrystal. In this way, the charge carriers can be confined into a limited space and the exciton binding energy will hence be improved. From the efficiency perspective, the green perovskite light emitting diodes promise to be commercialized. However, another critical issue impeding the development of green perovskite light emitting diodes is the stability problem. Comparing with the organic light emitting diodes and inorganic quantum dot light emitting diodes, the lifetime of perovskite light emitting diodes is too limited, which is only approximately one hundred hours under normal conditions. The temperature, moisture and light exposure are all factors that influence the stability of perovskite light emitting diodes.
-
Keywords:
- perovskite /
- light emitting diodes /
- green light /
- efficiency
[1] Quan L N, de Arquer F P G, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar
[2] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar
[3] Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar
[4] Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar
[5] Chen C H, Tang C W 2001 Appl. Phys. Lett. 79 3711Google Scholar
[6] Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar
[7] Kim Y H, Kim J S, Lee T W 2018 Adv. Mater. DOI: 10.1002/adma.201804595
[8] 彭玮婷, 邵双运, 林子钰, 单宏儒, 张洁瑞 2016 光电子·激光 27 1320
Peng W T, Shao S Y, Lin Z Y, Shan H R, Zhang J R 2016 J. Optoelectron. Laser 27 1320
[9] Li G R, Tan Z K, Di D W, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar
[10] Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar
[11] Cho H C, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar
[12] Li J Q, Shan X, Bade S G R, Geske T, Jiang Q L, Yang X, Yu Z B 2016 J. Phys. Chem. Lett. 7 4059Google Scholar
[13] Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar
[14] Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H R, Yang Y, Wei M Y, Sutherland B R, Sargent E H, You J B 2017 Nat. Commun. 8 15640Google Scholar
[15] Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G, You J B 2018 Nat. Commun. 9 570Google Scholar
[16] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar
[17] Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar
[18] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar
[19] Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, de Angelis F 2013 J. Phys. Chem. C 117 13902Google Scholar
[20] Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar
[21] Veldhuis S A, Boix P P, Yantara N, Li M J, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar
[22] Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar
[23] Yan F, Xing J, Xing G C, Quan L, Tan S T, Zhao J X, Su R, Zhang L L, Chen S, Zhao Y W, Huan A, Sargent E H, Xiong Q H, Demir H V 2018 Nano Lett. 18 3157Google Scholar
[24] Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014 Energy Environ. Sci. 7 1377Google Scholar
[25] Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar
[26] Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar
[27] Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M C, Nedelcu G, Kim Y, Lin S C, Santos E J G, Kovalenko M V, Shih C J 2016 ACS Nano 10 9720Google Scholar
[28] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar
[29] Meng L, Yao E P, Hong Z R, Chen H J, Sun P Y, Yang Z L, Li G, Yang Y 2017 Adv. Mater. 29 1603826Google Scholar
[30] Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar
[31] Wang Z J, Huai B X, Yang G J, Wu M G, Yu J S 2018 J. Lumin. 204 110Google Scholar
[32] Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar
[33] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar
[34] Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar
[35] Deng W, Xu X Z, Zhang X J, Zhang Y D, Jin X C, Wang L, Lee S T, Jie J S 2016 Adv. Funct. Mater. 26 4797Google Scholar
[36] Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nat. Photon. 10 699Google Scholar
[37] Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar
[38] Si J J, Liu Y, He Z F, Du H, Du K, Chen D, Li J, Xu M M, Tian H, He H P, Di D W, Ling C Q, Cheng Y C, Wang J P, Jin Y Z 2017 ACS Nano 11 11100Google Scholar
[39] Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar
[40] Yambem S D, Liao K S, Alley N J, Curran S A 2012 J. Mater. Chem. 22 6894Google Scholar
[41] Lee S, Park J H, Nam Y S, Lee B R, Zhao B D, Di Nuzzo D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar
-
表 1 部分高效GPeLED的工作寿命
Table 1. Working lifetime of some high-efficiency GPeLEDs.
-
[1] Quan L N, de Arquer F P G, Sabatini R P, Sargent E H 2018 Adv. Mater. 30 1801996Google Scholar
[2] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar
[3] Cao Y, Wang N N, Tian H, Guo J S, Wei Y Q, Chen H, Miao Y F, Zou W, Pan K, He Y R, Cao H, Ke Y, Xu M M, Wang Y, Yang M, Du K, Fu Z W, Kong D C, Dai D X, Jin Y Z, Li G Q, Li H, Peng Q M, Wang J P, Huang W 2018 Nature 562 249Google Scholar
[4] Lin K B, Xing J, Quan L N, de Arquer F P G, Gong X W, Lu J X, Xie L Q, Zhao W J, Zhang D, Yan C Z, Li W Q, Liu X Y, Lu Y, Kirman J, Sargent E H, Xiong Q H, Wei Z H 2018 Nature 562 245Google Scholar
[5] Chen C H, Tang C W 2001 Appl. Phys. Lett. 79 3711Google Scholar
[6] Dai X L, Deng Y Z, Peng X G, Jin Y Z 2017 Adv. Mater. 29 1607022Google Scholar
[7] Kim Y H, Kim J S, Lee T W 2018 Adv. Mater. DOI: 10.1002/adma.201804595
[8] 彭玮婷, 邵双运, 林子钰, 单宏儒, 张洁瑞 2016 光电子·激光 27 1320
Peng W T, Shao S Y, Lin Z Y, Shan H R, Zhang J R 2016 J. Optoelectron. Laser 27 1320
[9] Li G R, Tan Z K, Di D W, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar
[10] Wang J P, Wang N N, Jin Y Z, Si J J, Tan Z K, Du H, Cheng L, Dai X L, Bai S, He H P, Ye Z Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar
[11] Cho H C, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W 2015 Science 350 1222Google Scholar
[12] Li J Q, Shan X, Bade S G R, Geske T, Jiang Q L, Yang X, Yu Z B 2016 J. Phys. Chem. Lett. 7 4059Google Scholar
[13] Xiao Z G, Kerner R A, Zhao L F, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar
[14] Zhang L Q, Yang X L, Jiang Q, Wang P Y, Yin Z G, Zhang X W, Tan H R, Yang Y, Wei M Y, Sutherland B R, Sargent E H, You J B 2017 Nat. Commun. 8 15640Google Scholar
[15] Yang X L, Zhang X W, Deng J X, Chu Z M, Jiang Q, Meng J H, Wang P Y, Zhang L Q, Yin Z G, You J B 2018 Nat. Commun. 9 570Google Scholar
[16] Green M A, Ho-Baillie A, Snaith H J 2014 Nat. Photon. 8 506Google Scholar
[17] Kim Y H, Lee G H, Kim Y T, Wolf C, Yun H J, Kwon W, Park C G, Lee T W 2017 Nano Energy 38 51Google Scholar
[18] Noh J H, Im S H, Heo J H, Mandal T N, Seok S I 2013 Nano Lett. 13 1764Google Scholar
[19] Mosconi E, Amat A, Nazeeruddin M K, Gratzel M, de Angelis F 2013 J. Phys. Chem. C 117 13902Google Scholar
[20] Kitazawa N, Watanabe Y, Nakamura Y 2002 J. Mater. Sci. 37 3585Google Scholar
[21] Veldhuis S A, Boix P P, Yantara N, Li M J, Sum T C, Mathews N, Mhaisalkar S G 2016 Adv. Mater. 28 6804Google Scholar
[22] Seo H K, Kim H, Lee J, Park M H, Jeong S H, Kim Y H, Kwon S J, Han T H, Yoo S, Lee T W 2017 Adv. Mater. 29 1605587Google Scholar
[23] Yan F, Xing J, Xing G C, Quan L, Tan S T, Zhao J X, Su R, Zhang L L, Chen S, Zhao Y W, Huan A, Sargent E H, Xiong Q H, Demir H V 2018 Nano Lett. 18 3157Google Scholar
[24] Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D, Kahn A 2014 Energy Environ. Sci. 7 1377Google Scholar
[25] Yin W J, Shi T T, Yan Y F 2014 Appl. Phys. Lett. 104 063903Google Scholar
[26] Adjokatse S, Fang H H, Loi M A 2017 Mater. Today 20 413Google Scholar
[27] Kumar S, Jagielski J, Yakunin S, Rice P, Chiu Y C, Wang M C, Nedelcu G, Kim Y, Lin S C, Santos E J G, Kovalenko M V, Shih C J 2016 ACS Nano 10 9720Google Scholar
[28] Tanaka K, Takahashi T, Ban T, Kondo T, Uchida K, Miura N 2003 Solid State Commun. 127 619Google Scholar
[29] Meng L, Yao E P, Hong Z R, Chen H J, Sun P Y, Yang Z L, Li G, Yang Y 2017 Adv. Mater. 29 1603826Google Scholar
[30] Byun J, Cho H, Wolf C, Jang M, Sadhanala A, Friend R H, Yang H, Lee T W 2016 Adv. Mater. 28 7515Google Scholar
[31] Wang Z J, Huai B X, Yang G J, Wu M G, Yu J S 2018 J. Lumin. 204 110Google Scholar
[32] Chiba T, Hoshi K, Pu Y J, Takeda Y, Hayashi Y, Ohisa S, Kawata S, Kido J 2017 ACS Appl. Mater. Interfaces 9 18054Google Scholar
[33] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar
[34] Song J Z, Fang T, Li J H, Xu L M, Zhang F J, Han B N, Shan Q S, Zeng H B 2018 Adv. Mater. 30 1805409Google Scholar
[35] Deng W, Xu X Z, Zhang X J, Zhang Y D, Jin X C, Wang L, Lee S T, Jie J S 2016 Adv. Funct. Mater. 26 4797Google Scholar
[36] Wang N N, Cheng L, Ge R, Zhang S T, Miao Y F, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y Q, Guo Q, Ke Y, Yu M T, Jin Y Z, Liu Y, Ding Q Q, Di D W, Yang L, Xing G C, Tian H, Jin C H, Gao F, Friend R H, Wang J P, Huang W 2016 Nat. Photon. 10 699Google Scholar
[37] Yuan M J, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y B, Beauregard E M, Kanjanaboos P, Lu Z H, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar
[38] Si J J, Liu Y, He Z F, Du H, Du K, Chen D, Li J, Xu M M, Tian H, He H P, Di D W, Ling C Q, Cheng Y C, Wang J P, Jin Y Z 2017 ACS Nano 11 11100Google Scholar
[39] Kim Y H, Cho H, Heo J H, Kim T S, Myoung N, Lee C L, Im S H, Lee T W 2015 Adv. Mater. 27 1248Google Scholar
[40] Yambem S D, Liao K S, Alley N J, Curran S A 2012 J. Mater. Chem. 22 6894Google Scholar
[41] Lee S, Park J H, Nam Y S, Lee B R, Zhao B D, Di Nuzzo D, Jung E D, Jeon H, Kim J Y, Jeong H Y, Friend R H, Song M H 2018 ACS Nano 12 3417Google Scholar
计量
- 文章访问数: 20032
- PDF下载量: 705
- 被引次数: 0