-
基于激子输运在聚合物给体/富勒烯(或非富勒烯)受体异质结太阳能电池光伏过程中的重要作用, 本文结合最新的实验进展, 从理论上提出了由非均匀场驱动的超快激子输运机制. 动力学模拟采用扩展的一维Su-Schrieffer-Heeger紧束缚模型结合非绝热的量子动力学方法, 而非均匀场主要考虑了由受限电荷诱导的非均匀电场和分子排列相关的非均匀构型场. 研究发现: 非均匀电场和构型场均可驱动激子实现超快输运, 其输运速度比由传统的Förster或Dexter机制主导的激子输运可分别提高1和2个数量级. 另外, 本文重点分析了这两种非均匀场对激子输运的驱动机制, 定量计算了它们各自诱导的驱动力. 最后, 针对影响这两种非均匀场分布的因素(包括受限电荷相对聚合物分子的距离和聚合物分子线性排列的斜率), 讨论了它们对激子输运动力学的影响.Due to the exciton migration dynamics playing an important role in the photovoltaic process of organic solar cells, which are usually composed of polymer donor and fullerene (or non-fullerene) acceptor, in this paper we propose a new strategy to achieve the ultrafast exciton migration in polymers. Here, the effects of some nonuniform fields on the exciton migration dynamics in polymers are emphasized, such as the nonuniform electric field and the nonuniform polymer packing configuration field. Both of the two kinds of nonuniform fields can be intrinsically existent or modulated in an actual photovoltaic system. In this work, the nonuniform electric field and the nonuniform configuration field are assumed to be separately created by a confined charge and a linear polymer packing, therefore, their model Hamiltonian is established. In dynamical simulations of the exciton migration dynamics in polymers, an extended version of one-dimensional Su-Schrieffer-Heeger tight-binding model combined with a nonadiabatic evolution method is employed. It is found that the nonuniform electric field and the nonuniform configuration field both can drive exciton to an ultrafast migration process. Compared with the exciton migration speed dominated by the traditional Förster or Dexter mechanism, the exciton migration speed dominated by the nonuniform electric field and that by the nonuniform configuration field can be increased by one and two orders of magnitude, respectively. In addition, the driving mechanisms of the two kinds of nonuniform fields for the exciton migration dynamics are separately clarified, where the corresponding driving forces are also quantitatively calculated. Finally, in view of the factors affecting the distributions of the two kinds of nonuniform fields (such as the distance d between confined charge and polymer, and the linear packing slope k between polymers), we discuss their effects on the exciton migration dynamics. It is found that the exciton migration in polymer can be apparently accelerated by shortening the distance d between confined charge and polymer, and there exists a critical value of d, beyond which the exciton will be dissociated into free charges in its migration process. For the linear packing slope k between polymers, we find that there exists an optimal value, at which the exciton has the highest migration speed in polymers.
-
Keywords:
- polymers /
- photovoltaic effect /
- exciton migration
[1] Ameri T, Khoram P, Min J, Brabec C J 2013 Adv. Mater. 25 4245Google Scholar
[2] An Q S, Zhang F J, Zhang J, Tang W H, Deng Z B, Hu B 2016 Energy Environ. Sci. 9 281Google Scholar
[3] 於黄忠 2013 62 027201Google Scholar
Yu H Z 2013 Acta Phys. Sin. 62 027201Google Scholar
[4] Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1Google Scholar
[5] Meng L X, Zhang Y M, Wan X J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S 2018 Science 361 1094Google Scholar
[6] Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847Google Scholar
[7] Cheng P, Zhan X W 2016 Chem. Soc. Rev. 45 2544Google Scholar
[8] Bjorgaard J A, Köse M E 2015 RSC Adv. 5 8432Google Scholar
[9] Scholes G D, Rumbles G 2006 Nat. Mater. 5 683Google Scholar
[10] 王文静, 孟瑞璇, 李元, 高琨 2014 63 197901Google Scholar
Wang W J, Meng R X, Li Y, Gao K 2014 Acta Phys. Sin. 63 197901Google Scholar
[11] Ruini A, Caldas M J, Bussi G, Molinari E 2002 Phys. Rev. Lett. 88 206403Google Scholar
[12] Gao K, Liu X J, Liu D S, Xie S J 2008 Phys. Lett. A 372 2490Google Scholar
[13] Kaake L G, Moses D, Heeger A J 2015 Phys. Rev. B 91 075436Google Scholar
[14] Heeger A J 2014 Adv. Mater. 26 10Google Scholar
[15] Dimitrov S, Schroeder B, Nielsen C, Bronstein H, Fei Z, McCulloch I, Heeney M, Durrant J 2016 Polymers 8 14Google Scholar
[16] Förster T 1948 Ann. Phys. 2 55
[17] Dexter D L 1953 J. Chem. Phys. 21 836Google Scholar
[18] Menke S M, Holmes R J 2014 Energy Environ. Sci. 7 499Google Scholar
[19] Mikhnenko O V, Blom P W M, Nguyen T Q 2015 Energy Environ. Sci. 8 1867Google Scholar
[20] Scarongella M, de Jonghe-Risse J, Buchaca-Domingo E, Causa M, Fei Z, Heeney M, Moser J E, Stingelin N, Banerji N 2015 J. Am. Chem. Soc. 137 2908Google Scholar
[21] Kaake L G, Jasieniak J J, Bakus R C, Welch G C, Moses D, Bazan G C, Heeger A J 2012 J. Am. Chem. Soc. 134 19828Google Scholar
[22] Kaake L G, Moses D, Heeger A J 2013 J. Phys. Chem. Lett. 4 2264Google Scholar
[23] Kaake L G, Zhong C, Love J A, Nagao I, Bazan G C, Nguyen T Q, Huang F, Cao Y, Moses D, Heeger A J 2014 J. Phys. Chem. Lett. 5 2000Google Scholar
[24] Smith S L, Chin A W 2015 Phys. Rev. B 91 201302Google Scholar
[25] Najafov H, Lee B, Zhou Q, Feldman L C, Podzorov V 2010 Nat. Mater. 9 938Google Scholar
[26] Jin X U, Price M B, Finnegan J R, Boott C E, Richter J M, Rao A, Menke S M, Friend R H, Whittell G R, Manners I 2018 Science 360 897Google Scholar
[27] Su W P, Schrieffer J, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar
[28] Heeger A J, Kivelson S, Schrieffer J, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar
[29] Hu D, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P E 2000 Nature 405 1030Google Scholar
[30] Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J H 2018 Chin. J. Chem 36 491Google Scholar
[31] Yuan Y, Reece T J, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J S 2011 Nat. Mater. 10 296Google Scholar
[32] Karak S, Page Z A, Tinkham J S, Lahti P M, Emrick T, Duzhko V V 2015 Appl. Phys. Lett. 106 103303Google Scholar
[33] Meng R X, Li Y, Gao K, Qin W, Wang L X 2017 J. Phys. Chem. C 121 20546Google Scholar
[34] 赵二海, 孙鑫, 陈科, 付柔励 2000 49 1778Google Scholar
Zhao E H, Sun X, Chen K, Fu R L 2000 Acta Phys. Sin. 49 1778Google Scholar
[35] Sun X, Fu R L, Yonemitsu K, Nasu K 2000 Phys. Rev. Lett. 84 2830Google Scholar
[36] McMahon D P, Cheung D L, Troisi A 2011 J. Phys. Chem. Lett. 2 2737Google Scholar
[37] McEniry E J, Wang Y, Dundas D, Todorov T N, Stella L, Miranda R P, Fisher A J, Horsfield A P, Race C P, Mason D R, Foulkes W M C, Sutton A P 2010 Eur. Phys. J. B 77 305Google Scholar
-
图 1 受限正电荷 (电荷量为
$\left| e \right|$ )相对于聚合物链的位置, d为电荷与链右端点的距离; 曲线为d = 3 nm时电场强度沿分子链的分布, 负号表示电场的方向与分子链的正方向相反Fig. 1. Schematic diagram about the position of a confined charge (q =
$\left| e \right|$ ) relative to the polymer chain, d shows the distance between the charge and the right chain-end; the curve describes the distribution of the induced electric field E along the polymer chain with the case of d = 3 nm, where the minus sign means that the direction of the electric field is opposite to that of the chain. -
[1] Ameri T, Khoram P, Min J, Brabec C J 2013 Adv. Mater. 25 4245Google Scholar
[2] An Q S, Zhang F J, Zhang J, Tang W H, Deng Z B, Hu B 2016 Energy Environ. Sci. 9 281Google Scholar
[3] 於黄忠 2013 62 027201Google Scholar
Yu H Z 2013 Acta Phys. Sin. 62 027201Google Scholar
[4] Yuan J, Zhang Y Q, Zhou L Y, Zhang G C, Yip H L, Lau T K, Lu X H, Zhu C, Peng H J, Johnson P A, Leclerc M, Cao Y, Ulanski J, Li Y F, Zou Y P 2019 Joule 3 1Google Scholar
[5] Meng L X, Zhang Y M, Wan X J, Li C X, Zhang X, Wang Y B, Ke X, Xiao Z, Ding L M, Xia R X, Yip H L, Cao Y, Chen Y S 2018 Science 361 1094Google Scholar
[6] Janssen R A J, Nelson J 2013 Adv. Mater. 25 1847Google Scholar
[7] Cheng P, Zhan X W 2016 Chem. Soc. Rev. 45 2544Google Scholar
[8] Bjorgaard J A, Köse M E 2015 RSC Adv. 5 8432Google Scholar
[9] Scholes G D, Rumbles G 2006 Nat. Mater. 5 683Google Scholar
[10] 王文静, 孟瑞璇, 李元, 高琨 2014 63 197901Google Scholar
Wang W J, Meng R X, Li Y, Gao K 2014 Acta Phys. Sin. 63 197901Google Scholar
[11] Ruini A, Caldas M J, Bussi G, Molinari E 2002 Phys. Rev. Lett. 88 206403Google Scholar
[12] Gao K, Liu X J, Liu D S, Xie S J 2008 Phys. Lett. A 372 2490Google Scholar
[13] Kaake L G, Moses D, Heeger A J 2015 Phys. Rev. B 91 075436Google Scholar
[14] Heeger A J 2014 Adv. Mater. 26 10Google Scholar
[15] Dimitrov S, Schroeder B, Nielsen C, Bronstein H, Fei Z, McCulloch I, Heeney M, Durrant J 2016 Polymers 8 14Google Scholar
[16] Förster T 1948 Ann. Phys. 2 55
[17] Dexter D L 1953 J. Chem. Phys. 21 836Google Scholar
[18] Menke S M, Holmes R J 2014 Energy Environ. Sci. 7 499Google Scholar
[19] Mikhnenko O V, Blom P W M, Nguyen T Q 2015 Energy Environ. Sci. 8 1867Google Scholar
[20] Scarongella M, de Jonghe-Risse J, Buchaca-Domingo E, Causa M, Fei Z, Heeney M, Moser J E, Stingelin N, Banerji N 2015 J. Am. Chem. Soc. 137 2908Google Scholar
[21] Kaake L G, Jasieniak J J, Bakus R C, Welch G C, Moses D, Bazan G C, Heeger A J 2012 J. Am. Chem. Soc. 134 19828Google Scholar
[22] Kaake L G, Moses D, Heeger A J 2013 J. Phys. Chem. Lett. 4 2264Google Scholar
[23] Kaake L G, Zhong C, Love J A, Nagao I, Bazan G C, Nguyen T Q, Huang F, Cao Y, Moses D, Heeger A J 2014 J. Phys. Chem. Lett. 5 2000Google Scholar
[24] Smith S L, Chin A W 2015 Phys. Rev. B 91 201302Google Scholar
[25] Najafov H, Lee B, Zhou Q, Feldman L C, Podzorov V 2010 Nat. Mater. 9 938Google Scholar
[26] Jin X U, Price M B, Finnegan J R, Boott C E, Richter J M, Rao A, Menke S M, Friend R H, Whittell G R, Manners I 2018 Science 360 897Google Scholar
[27] Su W P, Schrieffer J, Heeger A J 1979 Phys. Rev. Lett. 42 1698Google Scholar
[28] Heeger A J, Kivelson S, Schrieffer J, Su W P 1988 Rev. Mod. Phys. 60 781Google Scholar
[29] Hu D, Yu J, Wong K, Bagchi B, Rossky P J, Barbara P E 2000 Nature 405 1030Google Scholar
[30] Yao H, Qian D, Zhang H, Qin Y, Xu B, Cui Y, Yu R, Gao F, Hou J H 2018 Chin. J. Chem 36 491Google Scholar
[31] Yuan Y, Reece T J, Sharma P, Poddar S, Ducharme S, Gruverman A, Yang Y, Huang J S 2011 Nat. Mater. 10 296Google Scholar
[32] Karak S, Page Z A, Tinkham J S, Lahti P M, Emrick T, Duzhko V V 2015 Appl. Phys. Lett. 106 103303Google Scholar
[33] Meng R X, Li Y, Gao K, Qin W, Wang L X 2017 J. Phys. Chem. C 121 20546Google Scholar
[34] 赵二海, 孙鑫, 陈科, 付柔励 2000 49 1778Google Scholar
Zhao E H, Sun X, Chen K, Fu R L 2000 Acta Phys. Sin. 49 1778Google Scholar
[35] Sun X, Fu R L, Yonemitsu K, Nasu K 2000 Phys. Rev. Lett. 84 2830Google Scholar
[36] McMahon D P, Cheung D L, Troisi A 2011 J. Phys. Chem. Lett. 2 2737Google Scholar
[37] McEniry E J, Wang Y, Dundas D, Todorov T N, Stella L, Miranda R P, Fisher A J, Horsfield A P, Race C P, Mason D R, Foulkes W M C, Sutton A P 2010 Eur. Phys. J. B 77 305Google Scholar
计量
- 文章访问数: 8218
- PDF下载量: 59
- 被引次数: 0