搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硒化锑薄膜太阳电池的模拟与结构优化研究

曹宇 祝新运 陈翰博 王长刚 张鑫童 侯秉东 申明仁 周静

引用本文:
Citation:

硒化锑薄膜太阳电池的模拟与结构优化研究

曹宇, 祝新运, 陈翰博, 王长刚, 张鑫童, 侯秉东, 申明仁, 周静

Simulation and optimal design of antimony selenide thin film solar cells

Cao Yu, Zhu Xin-Yun, Chen Han-Bo, Wang Chang-Gang, Zhang Xin-Tong, Hou Bing-Dong, Shen Ming-Ren, Zhou Jing
PDF
导出引用
  • 采用wx-AMPS模拟软件对硒化锑(Sb2Se3)薄膜太阳电池进行建模仿真,将CdS,ZnO和SnO2的模型应用到Sb2Se3太阳电池的电子传输层中.结果显示,应用CdS和ZnO都能实现较高的器件性能,并发现电子传输层电子亲和势(χe-ETL)的变化能够调节Sb2Se3太阳电池内部的电场分布,是影响器件性能的关键参数之一.过高或者过低的χe-ETL都会使电池的填充因子降低,导致电池性能劣化.当χe-ETL为4.2 eV时,厚度为0.6 μm的Sb2Se3太阳电池取得了最优的7.87%的转换效率.应用优化好的器件模型,在不考虑Sb2Se3层缺陷态的理想情况下,厚度为3 μm的Sb2Se3太阳电池的转换效率可以达到16.55%(短路电流密度Jsc=34.88 mA/cm2、开路电压Voc=0.59 V、填充因子FF=80.40%).以上模拟结果表明,Sb2Se3薄膜太阳电池在简单的器件结构下就能够获得优异的光电性能,具有较高的应用潜力.
    In this paper, the wx-AMPS simulation software is used to model and simulate the antimony selenide (Sb2Se3) thin film solar cells. Three different electron transport layer models (CdS, ZnO and SnO2) are applied to the Sb2Se3 solar cells, and the conversion efficiencies of which are obtained to be 7.35%, 7.48% and 6.62% respectively. It can be seen that the application of CdS and ZnO can achieve a better device performance. Then, the electric affinity of the electron transport layer (χe-ETL) is adjusted from 3.8 eV to 4.8 eV to study the effect of the energy band structure change on the solar cell performance. The results show that the conversion efficiency of the Sb2Se3 solar cell first increases and then decreases with the increase of the χe-ETL. The lower χe-ETL creates a barrier at the interface between the electron transport layer and the Sb2Se3 layer, which can be considered as a high resistance layer, resulting in the increase of series resistance. On the other hand, when the χe-ETL is higher than 4.6 eV, the electric field of the electron transport layer can be reversed, leading to the accumulation of the photon-generated carriers at the interface between the transparent conductive film and the electron transport layer, which could also hinder the carrier transport and increase the series resistance. At the same time, the electric field of Sb2Se3 layer becomes weak with the value of χe-ETL increasing according to the band structure of the Sb2Se3 solar cell, leading to the increase of the carriers' recombination and the reduction of the cell parallel resistance. As a result, too high or too low χe-ETL can lower the FF value and cause the device performance to degrade. Thus, to maintain high device performance, from 4.0 eV to 4.4 eV is a suitable range for the χe-ETL of the Sb2Se3 solar cell. Moreover, based on the optimization of the χe-ETL, the enhancement of the Sb2Se3 layer material quality can further improve the solar cell performance. In the case of removing the defect states of the Sb2Se3 layer, the conversion efficiency of the Sb2Se3 solar cell with a thickness of 0.6 μm is significantly increased from 7.87% to 12.15%. Further increasing the thickness of the solar cell to 3 μm, the conversion efficiency can be as high as 16.55% (Jsc=34.88 mA/cm2, Voc=0.59 V, FF=80.40%). The simulation results show that the Sb2Se3 thin film solar cells can obtain excellent performance with simple device structure and have many potential applications.
    • 基金项目: 国家自然科学基金(批准号:51772049)和吉林省科技发展计划(批准号:20170520159JH)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772049) and the Jilin Scientific and Technological Development Program, China (Grant No. 20170520159JH).
    [1]

    Lee T D, Ebong A U 2017 Renew. Sustain. Energy Rev. 70 1286

    [2]

    Bosio A, Rosa G, Romeo N 2018 Sol. Energy DOI: 10.1016/j.solener.2018.01.018

    [3]

    Bermudez V 2017 Sol. Energy 146 85

    [4]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S 2015 Science 348 1234

    [5]

    Chen C, Li W, Zhou Y, Chen C, Luo M, Liu X, Zeng K, Yang B, Zhang C, Han J, Tang J 2015 Appl. Phys. Lett. 107 043905

    [6]

    Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J 2014 Adv. Energy Mater. 4 1301846

    [7]

    Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S H, Noh J H, Seok S 2014 Angew. Chem. 126 1353

    [8]

    Yuan C, Zhang L, Liu W, Zhu C 2016 Sol. Energy 137 256

    [9]

    Liang G X, Zheng Z H, Fan P, Luo J T, Hu J G, Zhang X H, Ma H L, Fan B, Luo Z K, Zhang D P 2018 Sol. Energy Mater. Sol. Cells 174 263

    [10]

    Zhao B, Wan Z, Luo J, Han F, Malik H A, Jia C, Liu X, Wang R 2018 Appl. Surf. Sci. 450 228

    [11]

    Liu X, Xiao X, Yang Y, Xue D J, Li D B, Chen C, Lu S, Gao L, He Y, Beard M C, Chen S, Tang J 2017 Prog. Photovolt.: Res. Appl. 25 861

    [12]

    Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J 2015 Nat. Photon. 9 409

    [13]

    Shen K, Ou C, Hang T, Zhu H, Li J, Li Z, Mai Y 2018 Sol. Energy Mater. Sol. Cells 186 58

    [14]

    Wang L, Li D B, Li K, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G, Tang J 2017 Nat. Energy 2 17046

    [15]

    Chen C, Zhao Y, Lu S, Li K, Li Y, Yang B, Chen W, Wang L, Li D, Deng H, Yi F, Tang J 2017 Adv. Energy Mater. 7 1700866

    [16]

    Lu S, Zhao Y, Chen C, Zhou Y, Li D, Li K, Chen W, Wen X, Wang C, Kondrotas R, Lowe N, Tang J 2018 Adv. Electron. Mater. 4 1700329

    [17]

    Patrick C E, Giustino F 2011 Adv. Funct. Mater. 21 4663

    [18]

    Wen X, Chen C, Lu S, Li K, Kondrotas R, Zhao Y, Chen W, Gao L, Wang C, Zhang J, Niu G, Tang J 2018 Nat. Commun. 9 2179

    [19]

    Liu Y, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124

    [20]

    Yaşar S, Kahraman S, Çetinkaya S, Apaydin S, Bilican I, Uluer I 2016 Optik 127 8827

    [21]

    Gloeckler M, Fahrenbruch A L, Sites J R 2003 Proceedings of 3rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11-18, 2003 p491

    [22]

    Chen C, Bobela D C, Yang Y, Lu S, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J 2017 Front. Optoelectron. 10 18

    [23]

    Zhang L, Li Y, Li C, Chen Q, Zhen Z, Jiang X, Zhong M, Zhang F, Zhu H 2017 ACS Nano 11 12753

    [24]

    Lin L, Jiang L, Qiu Y, Fan B 2018 J. Phys. Chem. Solids 122 19

  • [1]

    Lee T D, Ebong A U 2017 Renew. Sustain. Energy Rev. 70 1286

    [2]

    Bosio A, Rosa G, Romeo N 2018 Sol. Energy DOI: 10.1016/j.solener.2018.01.018

    [3]

    Bermudez V 2017 Sol. Energy 146 85

    [4]

    Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J, Seok S 2015 Science 348 1234

    [5]

    Chen C, Li W, Zhou Y, Chen C, Luo M, Liu X, Zeng K, Yang B, Zhang C, Han J, Tang J 2015 Appl. Phys. Lett. 107 043905

    [6]

    Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J 2014 Adv. Energy Mater. 4 1301846

    [7]

    Choi Y C, Mandal T N, Yang W S, Lee Y H, Im S H, Noh J H, Seok S 2014 Angew. Chem. 126 1353

    [8]

    Yuan C, Zhang L, Liu W, Zhu C 2016 Sol. Energy 137 256

    [9]

    Liang G X, Zheng Z H, Fan P, Luo J T, Hu J G, Zhang X H, Ma H L, Fan B, Luo Z K, Zhang D P 2018 Sol. Energy Mater. Sol. Cells 174 263

    [10]

    Zhao B, Wan Z, Luo J, Han F, Malik H A, Jia C, Liu X, Wang R 2018 Appl. Surf. Sci. 450 228

    [11]

    Liu X, Xiao X, Yang Y, Xue D J, Li D B, Chen C, Lu S, Gao L, He Y, Beard M C, Chen S, Tang J 2017 Prog. Photovolt.: Res. Appl. 25 861

    [12]

    Zhou Y, Wang L, Chen S, Qin S, Liu X, Chen J, Xue D J, Luo M, Cao Y, Cheng Y, Sargent E H, Tang J 2015 Nat. Photon. 9 409

    [13]

    Shen K, Ou C, Hang T, Zhu H, Li J, Li Z, Mai Y 2018 Sol. Energy Mater. Sol. Cells 186 58

    [14]

    Wang L, Li D B, Li K, Chen C, Deng H X, Gao L, Zhao Y, Jiang F, Li L, Huang F, He Y, Song H, Niu G, Tang J 2017 Nat. Energy 2 17046

    [15]

    Chen C, Zhao Y, Lu S, Li K, Li Y, Yang B, Chen W, Wang L, Li D, Deng H, Yi F, Tang J 2017 Adv. Energy Mater. 7 1700866

    [16]

    Lu S, Zhao Y, Chen C, Zhou Y, Li D, Li K, Chen W, Wen X, Wang C, Kondrotas R, Lowe N, Tang J 2018 Adv. Electron. Mater. 4 1700329

    [17]

    Patrick C E, Giustino F 2011 Adv. Funct. Mater. 21 4663

    [18]

    Wen X, Chen C, Lu S, Li K, Kondrotas R, Zhao Y, Chen W, Gao L, Wang C, Zhang J, Niu G, Tang J 2018 Nat. Commun. 9 2179

    [19]

    Liu Y, Sun Y, Rockett A 2012 Sol. Energy Mater. Sol. Cells 98 124

    [20]

    Yaşar S, Kahraman S, Çetinkaya S, Apaydin S, Bilican I, Uluer I 2016 Optik 127 8827

    [21]

    Gloeckler M, Fahrenbruch A L, Sites J R 2003 Proceedings of 3rd World Conference on Photovoltaic Energy Conversion Osaka, Japan, May 11-18, 2003 p491

    [22]

    Chen C, Bobela D C, Yang Y, Lu S, Zeng K, Ge C, Yang B, Gao L, Zhao Y, Beard M C, Tang J 2017 Front. Optoelectron. 10 18

    [23]

    Zhang L, Li Y, Li C, Chen Q, Zhen Z, Jiang X, Zhong M, Zhang F, Zhu H 2017 ACS Nano 11 12753

    [24]

    Lin L, Jiang L, Qiu Y, Fan B 2018 J. Phys. Chem. Solids 122 19

  • [1] 隽珽, 邢家赫, 曾凡聪, 郑鑫, 徐琳. 基于SnO2:DPEPO混合电子传输层的钙钛矿太阳能电池性能研究.  , 2024, 73(19): 198401. doi: 10.7498/aps.73.20240827
    [2] 肖友鹏, 王怀平, 冯林. 硒化亚锗异质结太阳电池模拟研究.  , 2023, 72(24): 248801. doi: 10.7498/aps.72.20231220
    [3] 李学锐, 林俊辉, 唐戎, 郑壮豪, 苏正华, 陈烁, 范平, 梁广兴. 新型硒化锑薄膜太阳电池背接触优化.  , 2023, 72(3): 036401. doi: 10.7498/aps.72.20221929
    [4] 曹宇, 刘超颖, 赵耀, 那艳玲, 江崇旭, 王长刚, 周静, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化.  , 2022, 71(3): 038802. doi: 10.7498/aps.71.20211525
    [5] 曹宇, 王长刚, 于皓. 双电子传输层结构硫硒化锑太阳电池的界面特性优化研究.  , 2021, (): . doi: 10.7498/aps.70.20211525
    [6] 肖友鹏, 王怀平, 李刚龙. Graphene/Ag2ZnSnSe4诱导p-n结薄膜太阳电池数值模拟.  , 2021, 70(1): 018801. doi: 10.7498/aps.70.20201194
    [7] 甘永进, 蒋曲博, 覃斌毅, 毕雪光, 李清流. 锡基钙钛矿太阳能电池载流子传输层的探讨.  , 2021, 70(3): 038801. doi: 10.7498/aps.70.20201219
    [8] 曹宇, 蒋家豪, 刘超颖, 凌同, 孟丹, 周静, 刘欢, 王俊尧. 高效硫硒化锑薄膜太阳电池中的渐变能隙结构.  , 2021, 70(12): 128802. doi: 10.7498/aps.70.20202016
    [9] 梁晓娟, 曹宇, 蔡宏琨, 苏健, 倪牮, 李娟, 张建军. 肖特基钙钛矿太阳电池结构设计与优化.  , 2020, 69(5): 057901. doi: 10.7498/aps.69.20191891
    [10] 刘毅, 徐征, 赵谡玲, 乔泊, 李杨, 秦梓伦, 朱友勤. 双添加剂处理电子传输层富勒烯衍生物[6,6]-苯基-C61丁酸甲酯对钙钛矿太阳能电池性能的影响.  , 2017, 66(11): 118801. doi: 10.7498/aps.66.118801
    [11] 肖迪, 王东明, 李珣, 李强, 沈凯, 王德钊, 吴玲玲, 王德亮. 基于氧化镍背接触缓冲层碲化镉薄膜太阳电池的研究.  , 2017, 66(11): 117301. doi: 10.7498/aps.66.117301
    [12] 王福芝, 谭占鳌, 戴松元, 李永舫. 平面异质结有机-无机杂化钙钛矿太阳电池研究进展.  , 2015, 64(3): 038401. doi: 10.7498/aps.64.038401
    [13] 薛丁江, 石杭杰, 唐江. 新型硒化锑材料及其光伏器件研究进展.  , 2015, 64(3): 038406. doi: 10.7498/aps.64.038406
    [14] 刘博智, 黎瑞锋, 宋凌云, 胡炼, 张兵坡, 陈勇跃, 吴剑钟, 毕刚, 王淼, 吴惠桢. 氧化锌锡作为电子传输层的量子点发光二极管.  , 2013, 62(15): 158504. doi: 10.7498/aps.62.158504
    [15] 刘伟庆, 寇东星, 胡林华, 戴松元. 染料敏化太阳电池内部光路折转对电子传输特性的影响.  , 2012, 61(16): 168201. doi: 10.7498/aps.61.168201
    [16] 奚小网, 胡林华, 徐炜炜, 戴松元. TiCl4处理多孔薄膜对染料敏化太阳电池中电子传输特性影响研究.  , 2011, 60(11): 118203. doi: 10.7498/aps.60.118203
    [17] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池.  , 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [18] 梁林云, 戴松元, 方霞琴, 胡林华. 染料敏化太阳电池中TiO2膜内电子传输和背反应特性研究.  , 2008, 57(3): 1956-1962. doi: 10.7498/aps.57.1956
    [19] 金 鑫, 张晓丹, 雷志芳, 熊绍珍, 宋 峰, 赵 颖. 薄膜太阳电池用纳米上转换材料制备及其特性研究.  , 2008, 57(7): 4580-4584. doi: 10.7498/aps.57.4580
    [20] 郭 力, 梁林云, 陈 冲, 王命泰, 孔明光, 王孔嘉. 聚苯胺基固态染料敏化太阳电池中电子输运性能的研究.  , 2007, 56(7): 4270-4276. doi: 10.7498/aps.56.4270
计量
  • 文章访问数:  7069
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-21
  • 修回日期:  2018-11-01
  • 刊出日期:  2019-12-20

/

返回文章
返回
Baidu
map