-
二维多孔碳材料能够提供较短的电解质扩散通道和较快的电子传输过程,因此在能量转换和储存装置中表现出优异的电化学性能.近年来的理论和实验研究表明,两元素共掺杂可使二维多孔碳材料的电化学性能得到明显提高.因此,共掺杂二维多孔碳材料的制备成为目前的研究热点之一.本文以甲基橙-FeCl3复合物为模板引发剂制备了甲基橙掺杂的聚吡咯纳米管,通过对聚吡咯纳米管与KOH混合物(重量比为1:2)在700 ℃进行热处理,制备了二维石墨烯状氮/硫共掺杂多孔碳纳米片.所制备的氮/硫共掺杂多孔碳纳米片相互连结,形成了多级孔结构.氮气吸附分析表明多级孔结构包含微孔、介孔和大孔,这使所制备的氮/硫共掺杂多孔碳纳米片具有较高的比表面积(1744.58 m2/g)和孔体积(1.01 cm3/g).共掺杂多孔碳纳米片中的掺杂氮以吡啶氮、吡咯氮和季胺氮形式存在,掺杂硫以噻吩硫和氧化态硫形式存在,二者之间的协同效应能够明显改善碳纳米片表面的浸润性,增加表面电化学活性点.这些特征使所制备的氮/硫共掺杂多孔碳纳米片表现出优异的电化学性能.用氮/硫共掺杂多孔碳纳米片制备的量子点敏化太阳能电池对电极,对多硫电解质再生反应的电催化活性与传统PbS对电极相近,所组装电池的光电转换效率可达到4.30%(100 mW/cm2).氮/硫共掺杂多孔碳纳米片作为超级电容器电极材料,以6 M(1 M=1 mol/L)KOH为电解质,电流密度为0.4 A/g,比电容达到312.8 F/g.即使电流密度增加到20 A/g,比电容仍达到200.6 F/g,表明其具有较好的倍率性能.Porous carbon materials have aroused extensive interest in the field of energy conversion and storage due to their high surface area, regulatable pore structure, high electrical conductivity and stability, and good electrochemical activity. Nevertheless, granular porous carbons usually result in the relatively long electrolyte-diffusion pathway, which seriously limits the ions transport and then damage the electrochemical performance. Two-dimensional (2D) carbon materials can solve this problem because they can provide short electrolyte-diffusion channel and realize the fast electron transport. On the other hand, dual-heteroatom codoping has been confirmed to be quite an effective approach to improving the electrochemical performance of carbon materials. Therefore, a simple and efficient synthesis of co-doped 2D porous carbon materials is highly attractive.
In this work, nitrogen/sulfur co-doped porous carbon nanosheets (NSPCNs) are prepared from methyl orange (MO) doped polypyrrole (PPy) nanotubes by a thermal-treating process in the presence of KOH under N2 atmosphere. MO-doped PPy nanotubes are prepared through a self-degraded process by using MO-FeCl3 complex as the template initiator. In the thermal process, the combination of the dedoping derived from the interaction between MO and KOH, the pyrolysis of PPy, and KOH activation results in the exfoliation of PPy nanotubes and the formation of NSPCNs. Scanning electron microscopy and transmission electron microscopy analyses demonstrate that as-prepared NSPCNs interconnect to form a hierarchical porous architecture containing micropores, mesopores, and macropores, which provides the three-dimensional interconnected channel for electrolyte diffusion with little hindrance. The N2 sorption measurements indicate that NSPCNs have a high specific area of 1744.8 m2/g and volume of 1.01 cm3/g. The X-ray photoelectron spectroscopy measurements indicate that nitrogen and sulfur have been incorporated into the framework of the as-prepared carbon sample. The doped nitrogen is present in the form of pyridinic, pyrrolic, and quaternary state, and the doped sulfur appears in the form of C-Sn-S and-SOn-configuration. The synergistic effect of co-doped nitrogen and sulfur promote the redistribution of spin and charge density, which can greatly enhance the surface wettability and increase the electrochemical active sites of carbon materials. These features endow as-prepared NSPCNs with excellent electrochemical properties. Electrochemcial impedance spectroscopic measurements indicate that the charge transfer resistance of NSPCN in polysulfide electrolyte is 11.2 Ω·cm2, suggesting a very high electrocatalytic activity of NSPCNs for regenerating the polysulfide electrolyte. Under the illumination of 100 mW/cm-2, the NSPCNs' electrode-based quantum dot-sensitized solar cell achieves a conversion efficiency of 4.30%, which is comparable to that of the PbS electrode-based cell. Furthermore, NSPCNs display excellent capacitive performance. In 6 M KOH aqueous electrolyte, NSPCNs achieve a high specific capacitance of 312.8 F/g at a current density of 0.4 A/g. Even the current density increases to 20 A/g, the NSPCNs still maintain a specific capacitance of 200.6 F/g, indicating a good rate performance. Therefore, the as-prepared NSPCNs can be used as the high-performance electrode materials for quantum-dot sensitized solar cells and supercapacitors.[1] Kavan L 2014 Top Curr. Chem. 348 53
[2] Wu M, Lin X, Wang T 2011 Energy Environ. Sci. 4 2308
[3] Liu H, Song C, Zhang L 2006 J. Power Sources 155 95
[4] Yun Y, Park M, Hong S 2015 ACS Appl. Mater. Interfaces 7 3684
[5] Sevilla M, Fuertes A B 2014 ACS Nano 8 5069
[6] Zhang D, Li X, Li H 2011 Carbon 49 5382
[7] Wei W, Sun K, Hu Y 2016 J. Mater. Chem. A 4 12054
[8] Jeon I, Choi H, Ju M J 2013 Scientific Report 3 2260
[9] Hou J, Cao C, Idrees F 2015 ACS Nano 9 2556
[10] Chen X, Xu X, Yang Z 2014 Nanoscale 6 13740
[11] Zhang C, Mahmood N, Yin H 2013 Adv. Mater. 35 4932
[12] Xue Y, Liu J, Chen H 2012 Angew. Chem. 124 12290
[13] Yang W, Ma X, Xu X 2015 J. Power Sources 282 228
[14] Fang H, Yu C, Ma T 2014 Chem. Commun. 50 3328
[15] Liu Y, Wang Y, Zheng X 2017 Comput. Mater. Sci. 136 44
[16] Liang J, Jiao Y, Jaroniec M 2012 Angew. Chem. 124 11664
[17] Yan X, Liu Y, Fan X 2014 J. Power Sources 248 745
[18] Yu C, Fang H, Liu Z 2016 Nano energy 25 184
[19] Qu K, Zheng Y, Dai S 2016 Nano Energy 19 373
[20] Sun L, Zhou H, Yao Y 2017 ACS Appl. Mater. Interfaces 9 26088
[21] Yang X, Zhu Z, Dai T 2005 Macromol. Rapid Commun. 26 1736
[22] Zhang Q, Han K, Li S, Li J, Ren K 2018 Nanoscale 10 2427
[23] Lu S, Jin M, Zhang Y, Niu Y, Li C 2017 Adv. Energy Mater. 7 1702545
[24] Jiao S, Du J, Long D 2017 J. Phys. Chem. Lett. 8 559
[25] Zhang H, Yang C, Du Z 2017 J. Mater. Chem. A 5 1614
[26] Wang Y, Zhang Q, Huang F, Zhen Y, Tao X, Cao G 2018 Nano Energy 44 135
[27] Fan X, Yu C, Yang J 2015 Adv. Energy Mater. 5 1401761
[28] Yang W, Ding F, Sang L, Ma Z, Shao G 2017 Carbon 111 419
[29] Hao P, Zhao Z, Leng Y 2015 Nano Energy 15 9
[30] Ling Z, Wang Z, Zhang M 2016 Adv. Funct. Mater. 26 111
[31] Han J, Xu G, Dou H 2015 Chem. Eur. J. 21 2310
[32] Zhang D, Han M, Li Y 2016 Electrochim. Acta 222 141
[33] Tian J, Zhang H, Liu Z, Qin G, Li Z 2018 Int. J. Hydrogen Energy 43 1596
-
[1] Kavan L 2014 Top Curr. Chem. 348 53
[2] Wu M, Lin X, Wang T 2011 Energy Environ. Sci. 4 2308
[3] Liu H, Song C, Zhang L 2006 J. Power Sources 155 95
[4] Yun Y, Park M, Hong S 2015 ACS Appl. Mater. Interfaces 7 3684
[5] Sevilla M, Fuertes A B 2014 ACS Nano 8 5069
[6] Zhang D, Li X, Li H 2011 Carbon 49 5382
[7] Wei W, Sun K, Hu Y 2016 J. Mater. Chem. A 4 12054
[8] Jeon I, Choi H, Ju M J 2013 Scientific Report 3 2260
[9] Hou J, Cao C, Idrees F 2015 ACS Nano 9 2556
[10] Chen X, Xu X, Yang Z 2014 Nanoscale 6 13740
[11] Zhang C, Mahmood N, Yin H 2013 Adv. Mater. 35 4932
[12] Xue Y, Liu J, Chen H 2012 Angew. Chem. 124 12290
[13] Yang W, Ma X, Xu X 2015 J. Power Sources 282 228
[14] Fang H, Yu C, Ma T 2014 Chem. Commun. 50 3328
[15] Liu Y, Wang Y, Zheng X 2017 Comput. Mater. Sci. 136 44
[16] Liang J, Jiao Y, Jaroniec M 2012 Angew. Chem. 124 11664
[17] Yan X, Liu Y, Fan X 2014 J. Power Sources 248 745
[18] Yu C, Fang H, Liu Z 2016 Nano energy 25 184
[19] Qu K, Zheng Y, Dai S 2016 Nano Energy 19 373
[20] Sun L, Zhou H, Yao Y 2017 ACS Appl. Mater. Interfaces 9 26088
[21] Yang X, Zhu Z, Dai T 2005 Macromol. Rapid Commun. 26 1736
[22] Zhang Q, Han K, Li S, Li J, Ren K 2018 Nanoscale 10 2427
[23] Lu S, Jin M, Zhang Y, Niu Y, Li C 2017 Adv. Energy Mater. 7 1702545
[24] Jiao S, Du J, Long D 2017 J. Phys. Chem. Lett. 8 559
[25] Zhang H, Yang C, Du Z 2017 J. Mater. Chem. A 5 1614
[26] Wang Y, Zhang Q, Huang F, Zhen Y, Tao X, Cao G 2018 Nano Energy 44 135
[27] Fan X, Yu C, Yang J 2015 Adv. Energy Mater. 5 1401761
[28] Yang W, Ding F, Sang L, Ma Z, Shao G 2017 Carbon 111 419
[29] Hao P, Zhao Z, Leng Y 2015 Nano Energy 15 9
[30] Ling Z, Wang Z, Zhang M 2016 Adv. Funct. Mater. 26 111
[31] Han J, Xu G, Dou H 2015 Chem. Eur. J. 21 2310
[32] Zhang D, Han M, Li Y 2016 Electrochim. Acta 222 141
[33] Tian J, Zhang H, Liu Z, Qin G, Li Z 2018 Int. J. Hydrogen Energy 43 1596
计量
- 文章访问数: 8894
- PDF下载量: 198
- 被引次数: 0