搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种新的基于频域有限差分方法的小周期有机太阳能电池的光电特性

孙龙 任昊 冯大政 王石语 邢孟道

引用本文:
Citation:

一种新的基于频域有限差分方法的小周期有机太阳能电池的光电特性

孙龙, 任昊, 冯大政, 王石语, 邢孟道

Optical and electrical properties of short-pitch solar cells with finite-difference frequency-domain method

Sun Long, Ren Hao, Feng Da-Zheng, Wang Shi-Yu, Xing Meng-Dao
PDF
导出引用
  • 由MoO3/Ag/MoO3 (MAM)组成的多层膜结构非常有希望替代ITO作为有机太阳能电池中的透明阳极.然而,基于MAM结构的有机太阳能电池光吸收能力较弱.为此,引入了一种小周期短节距金属光栅,利用表面等离子激元增强活性层的光吸收.借助于频域有限差分方法求解麦克斯韦方程和半导体方程,探讨了有机太阳能电池结构的光学和电学性质.分析结果表明:与平面结构相比,活性层中的光吸收大大提高;同时,当凹槽宽度为4 nm,能量转换效率提高了49%.相关结果有助于更好地开发和利用无ITO层的有机太阳能电池.
    Organic solar cells (OSCs) have attracted intensive attention in recent years due to their distinct advantages of rich material resources, easy fabrication, and good flexibility. The standard structure of OSCs consists of an anode, an active layer and a cathode. Indium tin oxide (ITO) is often used as a transparent anode. However, the indium in ITO is not only very low in content, but also can penetrate into other layers of OSCs and affect the battery life. The ITO is not suitable for flexible OSCs because of its brittleness. Therefore, researchers have been trying to find alternatives to ITO, which should have transparent and flexible electrodes. The multilayer film consisting of MoO3/Ag/MoO3 is a very promising candidate as an alternative of ITO to work as the transparent anode in OSCs. However, in MoO3/Ag/MoO3 based thin OSCs structure, the absorption of light is quite poor. Here, we introduce a short-pitch metallic grating in which there are used the surface plasmon polaritons (SPPs) to enhance the light absorption of the active layer. The finite-difference frequency-domain method is used to solve the Maxwell's equations and semiconductor equations for revealing the optical and electrical properties of OSCs. As is well known, the contradiction between the long light absorption path and the short exciton diffusion length results in a relatively low power conversion efficiency (PCE) of the OSCs. Metallic gratings can be introduced into conventional OSCs for improving the light absorption due to the surface plasmon resonance. The light absorption can be enhanced compared with that in the conventional OSCs without metallic gratings. At the same time, the small periodic structure is introduced into the MoO3/Ag/MoO3 anode-based OSCs. The small spacing between gratings creates a strong interaction between two adjacent metal nanowalls. These nanostructures and metal nanostructures will further enhance the light absorption. In this work, it is proposed that short-pitch metallic gratings be introduced into the MoO3/Ag/MoO3 anode-based OSCs for improving the light absorption and PCE. It is found that the light absorption of plasmonic structure with short-pitch metallic gratings can be greatly enhanced compared with standard structure without metallic gratings. Meanwhile, with an optimal groove width of 4 nm, PCE is improved by 49% compared with the case with the planar structure. These results contribute to better developing the ITO free OSCs.
      通信作者: 任昊, 410736009@qq.com
    • 基金项目: 国家自然科学基金(批准号:61701001,61601166,61701003)、安徽省高等学校自然科学研究项目(批准号:KJ2017ZD02,KJ2017ZD51)和国家自然科学基金优秀青年基金(批准号:61722101)资助的课题.
      Corresponding author: Ren Hao, 410736009@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61701001, 61601166, 61701003), the Natural Science Foundation for Universities of Anhui Province, China (Grant Nos. KJ2017ZD02, KJ2017ZD51), and the National Natural Science Fund for Excellent Young Scholars of China (Grant No. 61722101).
    [1]

    Duan C, Zhong C, Liu C, Huang F, Cao Y 2012 Chem. Mater. 24 1682

    [2]

    Li G, Zhu R, Yang Y 2012 Nature Photon. 6 153

    [3]

    In S, Mason D R, Lee H, Jung M, Lee C, Park N 2014 ACS Photon. 2 78

    [4]

    Kumar A, Zhou C 2010 ACS Nano 4 11

    [5]

    Ingans O 2011 Nature Photon. 5 201

    [6]

    Wang Y, He B, Wang H, Xu J, Ta T, Li W, Wang Q, Yang S, Tang Y, Zou B 2017 Mater. Lett. 188 107

    [7]

    Cho J M, Lee S K, Moon S J, Jo J, Shin W S 2014 Current Appl. Phys. 14 1144

    [8]

    Wu J, Agrawal M, Becerril H A, Bao Z, Liu Z, Chen Y, Peumans P 2009 ACS Nano 4 43

    [9]

    Zhang Y, Cui Y, Ji T, Hao Y, Zhu F 2017 IEEE Photon. J. 9 1

    [10]

    Atwater H A, Polman A 2010 Nature Mater. 9 205

    [11]

    Zhang Y, Cui Y, Wang W, Fung K H, Ji T, Hao Y, Zhu F 2015 Plasmonics 10 773

    [12]

    Huang Z X, Cheng L L, Wu B, Wu X L 2016 IEEE Photon. Technol. Lett. 28 2047

    [13]

    Barth J, Johnson R, Cardona M, Palik E 1991 Handbook of Optical Constants of Solids (New York:Academic Press) pp313-334

    [14]

    Boland P, Lee K, Dean J, Namkoong G 2010 Solar Energy Materials and Solar Cells 94 2170

    [15]

    Nam Y M, Huh J, Jo W H 2011 Solar Energy Materials and Solar Cells 95 1095

    [16]

    Berenger J P 1994 J. Computat. Phys. 114 185

    [17]

    Chen X W, Choy W C, Liang C, Wai P, He S 2007 Appl. Phys. Lett. 91 221112

    [18]

    Chew W, Jin J, Michielssen E 1997 Microw. Opt. Technol. Lett. 15 363

    [19]

    Wei E, Choy W C, Chew W C 2010 Opt. Express 18 5993

    [20]

    Huang Z X, Cheng L L, Wu X L 2016 IEEE Photon. J. 8 4

    [21]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese)[周丽, 魏源, 黄志祥, 吴先良 2015 64 018101]

    [22]

    Wei E, Choy W C, Wu Y, Chew W C 2012 Opt. Express 20 2572

    [23]

    Koster L J, Smits E, Mihailetchi V, Blom P 2005 Phys. Rev. B 72 085205

    [24]

    Sievers D W, Shrotriya V, Yang Y 2006 J. Appl. Phys. 100 114509

    [25]

    Wang J Y, Tsai F J, Huang J J, Chen C Y, Li N, Kiang Y W, Yang C 2010 Opt. Express 18 2682

    [26]

    Li X, Hylton N P, Giannini V, Lee K H, Ekins-Daukes N J, Maier S A 2011 Opt. Express 19 A888

  • [1]

    Duan C, Zhong C, Liu C, Huang F, Cao Y 2012 Chem. Mater. 24 1682

    [2]

    Li G, Zhu R, Yang Y 2012 Nature Photon. 6 153

    [3]

    In S, Mason D R, Lee H, Jung M, Lee C, Park N 2014 ACS Photon. 2 78

    [4]

    Kumar A, Zhou C 2010 ACS Nano 4 11

    [5]

    Ingans O 2011 Nature Photon. 5 201

    [6]

    Wang Y, He B, Wang H, Xu J, Ta T, Li W, Wang Q, Yang S, Tang Y, Zou B 2017 Mater. Lett. 188 107

    [7]

    Cho J M, Lee S K, Moon S J, Jo J, Shin W S 2014 Current Appl. Phys. 14 1144

    [8]

    Wu J, Agrawal M, Becerril H A, Bao Z, Liu Z, Chen Y, Peumans P 2009 ACS Nano 4 43

    [9]

    Zhang Y, Cui Y, Ji T, Hao Y, Zhu F 2017 IEEE Photon. J. 9 1

    [10]

    Atwater H A, Polman A 2010 Nature Mater. 9 205

    [11]

    Zhang Y, Cui Y, Wang W, Fung K H, Ji T, Hao Y, Zhu F 2015 Plasmonics 10 773

    [12]

    Huang Z X, Cheng L L, Wu B, Wu X L 2016 IEEE Photon. Technol. Lett. 28 2047

    [13]

    Barth J, Johnson R, Cardona M, Palik E 1991 Handbook of Optical Constants of Solids (New York:Academic Press) pp313-334

    [14]

    Boland P, Lee K, Dean J, Namkoong G 2010 Solar Energy Materials and Solar Cells 94 2170

    [15]

    Nam Y M, Huh J, Jo W H 2011 Solar Energy Materials and Solar Cells 95 1095

    [16]

    Berenger J P 1994 J. Computat. Phys. 114 185

    [17]

    Chen X W, Choy W C, Liang C, Wai P, He S 2007 Appl. Phys. Lett. 91 221112

    [18]

    Chew W, Jin J, Michielssen E 1997 Microw. Opt. Technol. Lett. 15 363

    [19]

    Wei E, Choy W C, Chew W C 2010 Opt. Express 18 5993

    [20]

    Huang Z X, Cheng L L, Wu X L 2016 IEEE Photon. J. 8 4

    [21]

    Zhou L, Wei Y, Huang Z X, Wu X L 2015 Acta Phys. Sin. 64 018101 (in Chinese)[周丽, 魏源, 黄志祥, 吴先良 2015 64 018101]

    [22]

    Wei E, Choy W C, Wu Y, Chew W C 2012 Opt. Express 20 2572

    [23]

    Koster L J, Smits E, Mihailetchi V, Blom P 2005 Phys. Rev. B 72 085205

    [24]

    Sievers D W, Shrotriya V, Yang Y 2006 J. Appl. Phys. 100 114509

    [25]

    Wang J Y, Tsai F J, Huang J J, Chen C Y, Li N, Kiang Y W, Yang C 2010 Opt. Express 18 2682

    [26]

    Li X, Hylton N P, Giannini V, Lee K H, Ekins-Daukes N J, Maier S A 2011 Opt. Express 19 A888

  • [1] 颜佳豪, 陈思璇, 杨建斌, 董敬敬. 吸收层离子掺杂提高有机无机杂化钙钛矿太阳能电池效率及稳定性.  , 2021, 70(20): 206801. doi: 10.7498/aps.70.20210836
    [2] 兰伟霞, 顾嘉陆, 高晓辉, 廖英杰, 钟宋义, 张卫东, 彭艳, 孙钰, 魏斌. 基于光子晶体的有机太阳能电池研究进展.  , 2021, 70(12): 128804. doi: 10.7498/aps.70.20201805
    [3] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池.  , 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [4] 张翱, 陈云琳, 闫君, 张春秀. 有机阳离子对卤素钙钛矿太阳能电池性能的影响.  , 2018, 67(10): 106701. doi: 10.7498/aps.67.20180236
    [5] 吴倩, 张诸宇, 郭晓晨, 施伟华. 基于光子晶体光纤交叉敏感分离的磁场温度传感研究.  , 2018, 67(18): 184212. doi: 10.7498/aps.67.20180680
    [6] 李雪, 王亮, 熊建桥, 邵秋萍, 蒋荣, 陈淑芬. 金纳米四面体增强有机太阳电池光吸收及光伏性能研究.  , 2018, 67(24): 247201. doi: 10.7498/aps.67.20181502
    [7] 赵泽宇, 刘晋侨, 李爱武, 牛立刚, 徐颖. 基于微腔-抗反射谐振杂化模式的吸收增强型有机太阳能电池的理论研究.  , 2016, 65(24): 248801. doi: 10.7498/aps.65.248801
    [8] 袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展.  , 2015, 64(3): 038405. doi: 10.7498/aps.64.038405
    [9] 涂程威, 田金鹏, 吴明晓, 刘彭义. PTCBI作为阴极修饰层对Rubrene/C70器件性能的影响.  , 2015, 64(20): 208801. doi: 10.7498/aps.64.208801
    [10] 黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿. 石墨烯衍生物作为有机太阳能电池界面材料的研究进展.  , 2015, 64(3): 038103. doi: 10.7498/aps.64.038103
    [11] 孙凯, 何志群, 梁春军. 多温度阶梯退火对有机聚合物太阳能电池器件性能的影响.  , 2014, 63(4): 048801. doi: 10.7498/aps.63.048801
    [12] 李萌, 牛贺莹, 姚路炎, 王栋梁, 周忠坡, 马恒. 胆甾液晶掺杂活性层对有机太阳能电池性能的影响.  , 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [13] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响.  , 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [14] 李青, 李海强, 赵娟, 黄江, 于军胜. 阴极修饰层对 SubPc/C60 倒置型有机太阳能电池性能的影响.  , 2013, 62(12): 128803. doi: 10.7498/aps.62.128803
    [15] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究.  , 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [16] 李蛟, 刘俊成, 高从堦. PEDOT:PSS薄膜的山梨醇掺杂对光电池性能的影响.  , 2011, 60(7): 078803. doi: 10.7498/aps.60.078803
    [17] 刘瑞, 徐征, 赵谡玲, 张福俊, 曹晓宁, 孔超, 曹文喆, 龚伟. 利用不同阴极缓冲层来改善Pentacene/C60太阳能电池的性能.  , 2011, 60(5): 058801. doi: 10.7498/aps.60.058801
    [18] 李艳武, 刘彭义, 侯林涛, 吴冰. Rubrene作电子传输层的异质结有机太阳能电池.  , 2010, 59(2): 1248-1251. doi: 10.7498/aps.59.1248
    [19] 邢宏伟, 彭应全, 杨青森, 马朝柱, 汪润生, 李训栓. 有机体异质结太阳能电池的数值分析.  , 2008, 57(11): 7374-7379. doi: 10.7498/aps.57.7374
    [20] 吴英才, 顾铮. 激励表面等离子共振的金属薄膜最佳厚度分析.  , 2008, 57(4): 2295-2299. doi: 10.7498/aps.57.2295
计量
  • 文章访问数:  6152
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-26
  • 修回日期:  2018-06-04
  • 刊出日期:  2018-09-05

/

返回文章
返回
Baidu
map