-
本文提出了一种基于人工表面等离激元的频率选择结构的设计方法:将设计的频率选择表面和金属鱼骨结构阵列相结合得到一种新的频率选择结构.文中采用这种方法设计了一种具有陡截止和高透、高抑制性能的双通带频率选择结构.该结构由金属鱼骨结构阵列和上下两层相同的频率选择表面复合而成.通过仿真可得,该结构的两个通带频率范围分别是3.04.1和10.510.9 GHz,透射率均在-0.5 dB以上.透射率低于-10 dB的频率范围是4.79.2和12.118 GHz.在12.415.5 GHz频率范围内,该结构的透射率甚至低于-20 dB.在通带内,电磁波可以高效地透过该结构;在阻带内,该结构对电磁波的透射具有较好的抑制作用.测试结果表明用这种方法设计出的频率选择结构的实际性能和仿真基本一致.在金属鱼骨结构空隙中填入轻质泡沫后该结构具有一定的力学承载性能,可以实现结构功能一体化的设计.In this paper, a method of designing the frequency selective structure based on spoof surface plasmon polariton (SSPP) is proposed and demonstrated. According to the applications in different working bands, the designed frequency selective surface (FSS) and metallic fishbone structure array can be combined together to form a new frequency selective structure and satisfy the requirements for practical applications. Meanwhile, a dual-band-pass frequency selective structure with the property of steep cut-off frequency and high-efficiency transmission and inhibition is designed by using this method. The dual-band-pass frequency selective structure is composed of a metallic fishbone structure array and two identical FSSs. The metallic fishbone structure based on SSPP coupling can form a broadband high-efficiency transmission below the cut-off frequency of SSPP on the metallic fishbone structure. When a dual-band-pass FSS is loaded to this metallic fishbone structure array, a dual-band-pass frequency selective structure can be achieved. To improve the impedance matching of the dual-band-pass frequency selective structure, two identical FSSs are respectively loaded to the top and bottom sides of the metallic fishbone structure array. The simulated transmissivities of the dual-band-pass frequency selective structure exceed-0.5 dB in two frequency ranges:3.0-4.1 GHz and 10.5-10.9 GHz. The simulated transmissivities are lower than-10 dB in other frequency ranges:4.7-9.2 GHz and 12.1-18 GHz. The simulated transmissivities are even below-20 dB from 12.4 GHz to 15.5 GHz. The electromagnetic waves can be efficiently transmitted in the passband and restrained in the stopband. Then the dual-band-pass frequency selective structure is fabricated by using the printed circuit board technique and measured in the anechoic chamber. The measured results indicate that the real property of the dual-band-pass frequency selective structure is consistent with the simulated property and this method of designing the frequency selective structure is feasible. After filling the lightweight foam into the gap of the metallic fishbone structure, the mechanical loading property can be highly improved. Therefore, we can realize the design of combined structural and functional performance.
-
Keywords:
- spoof surface plasmon polariton /
- frequency selective structure /
- dual-band-pass /
- lumped resistance
[1] Lu G W, Zhang J, Yang J Y, Zhang T X, Kou Y 2013 Acta Phys. Sin. 62 198401 (in Chinese)[鲁戈舞, 张剑, 杨洁颖, 张天翔, 寇元 2013 62 198401]
[2] Sarabandi K, Behdad N 2007 IEEE Trans. Antennas Propag. 55 1239
[3] Salehi M, Behdad N 2008 IEEE Microwave Wireless Compon. Lett. 18 785
[4] Behdad N, Aljoumayly M A, Salehi M 2009 IEEE Trans. Antennas Propag. 57 460
[5] Aljoumayly M A, Behdad N 2010 IEEE Trans. Antennas Propag. 58 4042
[6] Wang S S, Gao J S, Liang F C, Wang Y S, Chen X 2011 Acta Phys. Sin 60 050703 (in Chinese)[王珊珊, 高劲松, 梁凤超, 王岩松, 陈新 2011 60 050703]
[7] Luo G Q, Hong W, Hao Z C, Liu B, Li W D, Chen J X, Zhou H X, Wu K 2005 IEEE Trans. Antennas Propag. 53 4035
[8] Luo G Q, Hong W, Lai Q H, Wu K, Sun L L 2007 IEEE Trans. Microwave Theory Tech. 55 2481
[9] Luo G Q, Hong W, Tang H J, Chen J X, Yin X X, Kuai Z Q, Wu K 2007 IEEE Trans. Antennas Propag. 55 92
[10] Luo G Q, Hong W, Lai Q H, Sun L L 2008 IET Microwaves Antennas Propag. 2 23
[11] Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101
[12] Huang F X, Batchelor J C, Parker E A 2006 Electron. Lett. 42 788
[13] Pendry J B, Martinmoreno L, Garciavidal F J 2004 Science 305 847
[14] Ma H F, Shen X P, Cheng Q, Jiang W X, Cui T J 2014 Laser Photonics Rev. 8 146
[15] Shen X P, Cui T J, Martincano D, Garciavidal F J 2013 PANS 110 40
[16] Gao X, Shi J H, Ma H F, Jiang W X, Cui T J 2012 J. Phys. D: Appl. Phys. 45 505104
[17] Shen X P, Cui T J 2013 Appl. Phys. Lett. 102 211909
[18] Li Y F, Ma H, Wang J F, Pang Y Q, Zheng Q Q, Chen H Y, Han Y J, Zhang J Q, Qu S B 2017 Sci. Rep. 7 40727
[19] Li Y F, Zhang J Q, Qu S B, Wang J F, Feng M D, Wang J, Xu Z 2016 Opt. Express 24 842
[20] Fu W Y, Han Y C, Li J D, Wang H S, Li H P, Han K, Shen X P, Cui T J 2016 J. Phys. D: Appl. Phys. 49 285110
-
[1] Lu G W, Zhang J, Yang J Y, Zhang T X, Kou Y 2013 Acta Phys. Sin. 62 198401 (in Chinese)[鲁戈舞, 张剑, 杨洁颖, 张天翔, 寇元 2013 62 198401]
[2] Sarabandi K, Behdad N 2007 IEEE Trans. Antennas Propag. 55 1239
[3] Salehi M, Behdad N 2008 IEEE Microwave Wireless Compon. Lett. 18 785
[4] Behdad N, Aljoumayly M A, Salehi M 2009 IEEE Trans. Antennas Propag. 57 460
[5] Aljoumayly M A, Behdad N 2010 IEEE Trans. Antennas Propag. 58 4042
[6] Wang S S, Gao J S, Liang F C, Wang Y S, Chen X 2011 Acta Phys. Sin 60 050703 (in Chinese)[王珊珊, 高劲松, 梁凤超, 王岩松, 陈新 2011 60 050703]
[7] Luo G Q, Hong W, Hao Z C, Liu B, Li W D, Chen J X, Zhou H X, Wu K 2005 IEEE Trans. Antennas Propag. 53 4035
[8] Luo G Q, Hong W, Lai Q H, Wu K, Sun L L 2007 IEEE Trans. Microwave Theory Tech. 55 2481
[9] Luo G Q, Hong W, Tang H J, Chen J X, Yin X X, Kuai Z Q, Wu K 2007 IEEE Trans. Antennas Propag. 55 92
[10] Luo G Q, Hong W, Lai Q H, Sun L L 2008 IET Microwaves Antennas Propag. 2 23
[11] Zuo Y, Shen Z X, Feng Y J 2014 Chin. Phys. B 23 034101
[12] Huang F X, Batchelor J C, Parker E A 2006 Electron. Lett. 42 788
[13] Pendry J B, Martinmoreno L, Garciavidal F J 2004 Science 305 847
[14] Ma H F, Shen X P, Cheng Q, Jiang W X, Cui T J 2014 Laser Photonics Rev. 8 146
[15] Shen X P, Cui T J, Martincano D, Garciavidal F J 2013 PANS 110 40
[16] Gao X, Shi J H, Ma H F, Jiang W X, Cui T J 2012 J. Phys. D: Appl. Phys. 45 505104
[17] Shen X P, Cui T J 2013 Appl. Phys. Lett. 102 211909
[18] Li Y F, Ma H, Wang J F, Pang Y Q, Zheng Q Q, Chen H Y, Han Y J, Zhang J Q, Qu S B 2017 Sci. Rep. 7 40727
[19] Li Y F, Zhang J Q, Qu S B, Wang J F, Feng M D, Wang J, Xu Z 2016 Opt. Express 24 842
[20] Fu W Y, Han Y C, Li J D, Wang H S, Li H P, Han K, Shen X P, Cui T J 2016 J. Phys. D: Appl. Phys. 49 285110
计量
- 文章访问数: 6731
- PDF下载量: 168
- 被引次数: 0