搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变形及电场作用对石墨烯电学特性影响的第一性原理计算

刘贵立 杨忠华

引用本文:
Citation:

变形及电场作用对石墨烯电学特性影响的第一性原理计算

刘贵立, 杨忠华

First-principles calculation of effects of deformation and electric field action on electrical properties of Graphene

Liu Gui-Li, Yang Zhong-Hua
PDF
导出引用
  • 利用基于密度泛函理论的第一性原理方法,系统研究了变形、电场及共同作用对石墨烯电学特性影响的电子机理.研究表明,本征石墨烯的能隙及态密度值在费米能级处均为0,呈现出半金属特性;在一定的变形量下对石墨烯施加剪切、拉伸、扭转及弯曲变形作用,发现剪切和扭转变形对打开石墨烯能隙的作用明显;对本征石墨烯施加不同方向的电场,可知电场方向对打开石墨烯能隙的作用效果最强.这是因为该电场方向下石墨烯C–C原子间的布居数正值较大,成键键能较高,而负值数值较小,反键键能较低;线性增加电场强度,石墨烯的能隙呈线性增长势;变形及电场共同作用下,外加电场提高了变形对打开石墨烯能隙的作用效果,但不及两种外场叠加的作用效果.
    Based on the first-principles method of density functional theory, a systematic research is conducted on the electron mechanism of the effect of deformation, electric field action and combined action on the electrical properties of graphene. The research results show that the energy gap and density of states of graphene are both 0 at the Fermi level, indicating semi-metallic character, which implies that the calculation model and the parameter setting are reasonable in this paper. After some deformation actions, such as shear, stretch, torsion and bending deformation on the graphene, it is found that shear and torsion exert an obvious effect on opening the energy gap of graphene, but the effects of tensile and bending deformation on the energy gap of graphene are negligible. Therefore, shear deformation and torsion deformation are a preferred alternative to controlling the energy gap of graphene. By adding the electric field to the graphene in different directions, it is found that the , and direction electric fields which are parallel to the plane of graphene exert a strong effect on opening the energy gap of graphene, but the effect of direction electric field which is perpendicular to the plane of graphene is weak. Especially, the direction electric field has the strongest effect on opening the energy gap of the graphene because the positive value of the population of graphene C–C atoms in the direction is relatively large and bond energy is high while the negative value is small and the antibond energy is low. In order to investigate the influence of electric field strength on energy gap of graphene, the electric field strength is increased linearly from 0.1 eV/Å/e to 0.5 eV/Å/e. It can be observed that the energy gap of graphene increases in turn, and shows a linear growth. Under the action of 0.1 eV/Å/e electric field strength, shear deformation, stretch deformation, torsion deformation and bending deformation take place on the grapheme. It is found that under the combined action of deformation and electric field, the electric field improves the effect of deformation on the energy gap, but the effect is not so good asunder the superposition of two fields.
      通信作者: 杨忠华, 331808017@qq.com
    • 基金项目: 国家自然科学基金(批准号:50671069)资助的课题.
      Corresponding author: Yang Zhong-Hua, 331808017@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 50671069)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich W, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N 2011 Appl. Phys. Lett. 99 102504

    [5]

    Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K, Grigorieva I V 2012 Nat. Phys. 8 199

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P T 2010 Appl. Phys. Lett. 97 193305

    [8]

    Sun L F, Fang C, Liang T X 2013 Chin. Phys. Lett. 30 047201

    [9]

    Zhou S, Liu G, Fan D 2017 Phys. B: Condens. Matter 506 156

    [10]

    Prezzi D, Varsano D, Ruini A, Marini A, Molinari E 2008 Phys. Rev. B 77 041404

    [11]

    Liao W H 2010 Ph. D. Dissertation (Hunan: Hunan Normal University) (in Chinese) [廖文虎 2010 博士学位论文 (湖南: 湖南师范大学)]

    [12]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 58 1931]

    [13]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [14]

    Yu J, Zhang X X, Ji J S, Huang D, Xi W 2015 Chin. J. Nonferrous Met. 25 3452

    [15]

    Park J S, Choi H J 2015 Phys. Rev. B: Condens. Matter Mat. Phys. 92 045402

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892

    [18]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 135 188

    [19]

    Shanno D F 1970 Math. Comput. 24 647

    [20]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 59 3408]

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva V, Firsov A A 2004 Science 306 666

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich W, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451

    [3]

    Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature 438 201

    [4]

    Ney A, Papakonstantinou P, Kumar A, Shang N G, Peng N 2011 Appl. Phys. Lett. 99 102504

    [5]

    Nair R R, Sepioni M, Tsai I L, Lehtinen O, Keinonen J, Krasheninnikov A V, Thomson T, Geim A K, Grigorieva I V 2012 Nat. Phys. 8 199

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109

    [7]

    He J, Chen K Q, Fan Z Q, Tang L M, Hu W P T 2010 Appl. Phys. Lett. 97 193305

    [8]

    Sun L F, Fang C, Liang T X 2013 Chin. Phys. Lett. 30 047201

    [9]

    Zhou S, Liu G, Fan D 2017 Phys. B: Condens. Matter 506 156

    [10]

    Prezzi D, Varsano D, Ruini A, Marini A, Molinari E 2008 Phys. Rev. B 77 041404

    [11]

    Liao W H 2010 Ph. D. Dissertation (Hunan: Hunan Normal University) (in Chinese) [廖文虎 2010 博士学位论文 (湖南: 湖南师范大学)]

    [12]

    Wei Y, Tong G P 2009 Acta Phys. Sin. 58 1931 (in Chinese) [韦勇, 童国平 2009 58 1931]

    [13]

    Gui G, Li J, Zhong J X 2008 Phys. Rev. B 78 075435

    [14]

    Yu J, Zhang X X, Ji J S, Huang D, Xi W 2015 Chin. J. Nonferrous Met. 25 3452

    [15]

    Park J S, Choi H J 2015 Phys. Rev. B: Condens. Matter Mat. Phys. 92 045402

    [16]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [17]

    Vanderbilt D 1990 Phys. Rev. B: Condens. Matter 41 7892

    [18]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 135 188

    [19]

    Shanno D F 1970 Math. Comput. 24 647

    [20]

    Han T W, He P F 2010 Acta Phys. Sin. 59 3408 (in Chinese) [韩同伟, 贺鹏飞 2010 59 3408]

  • [1] 白占斌, 王锐, 周亚洲, 吴天如, 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋-轨道相互作用.  , 2022, 71(6): 067202. doi: 10.7498/aps.71.20211815
    [2] 白占斌, 王锐, 周亚洲, Tianru Wu(吴天如), 葛建雷, 李晶, 秦宇远, 费付聪, 曹路, 王学锋, 王欣然, 张帅, 孙力玲, 宋友, 宋凤麒. 石墨烯中选择性增强Kane-Mele型自旋轨道相互作用.  , 2021, (): . doi: 10.7498/aps.70.20211815
    [3] 崔洋, 李静, 张林. 外加横向电场作用下石墨烯纳米带电子结构的密度泛函紧束缚计算.  , 2021, 70(5): 053101. doi: 10.7498/aps.70.20201619
    [4] 卫琳, 刘贵立, 王家鑫, 穆光耀, 张国英. 拉伸形变及电场作用对黑磷烯吸附Si原子电学特性影响的密度泛函理论研究.  , 2021, 70(21): 216301. doi: 10.7498/aps.70.20210812
    [5] 陈勇, 李瑞. 纳米尺度硼烯与石墨烯的相互作用.  , 2019, 68(18): 186801. doi: 10.7498/aps.68.20190692
    [6] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究.  , 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [7]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质.  , 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [8] 张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰. 石墨烯纳米结构的制备及带隙调控研究.  , 2017, 66(21): 217301. doi: 10.7498/aps.66.217301
    [9] 董若宇, 曹鹏, 曹桂兴, 胡帼杰, 曹炳阳. 直流电场下水中石墨烯定向行为研究.  , 2017, 66(1): 014702. doi: 10.7498/aps.66.014702
    [10] 韩同伟, 李攀攀. 石墨烯剪纸的大变形拉伸力学行为研究.  , 2017, 66(6): 066201. doi: 10.7498/aps.66.066201
    [11] 刘学文, 朱重阳, 董辉, 徐峰, 孙立涛. 二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用.  , 2016, 65(11): 118802. doi: 10.7498/aps.65.118802
    [12] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性.  , 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
    [13] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质.  , 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] 卢晓波, 张广宇. 石墨烯莫尔超晶格.  , 2015, 64(7): 077305. doi: 10.7498/aps.64.077305
    [15] 张保磊, 王家序, 肖科, 李俊阳. 石墨烯-纳米探针相互作用有限元准静态计算.  , 2014, 63(15): 154601. doi: 10.7498/aps.63.154601
    [16] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究.  , 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [17] 张秋慧, 韩敬华, 冯国英, 徐其兴, 丁立中, 卢晓翔. 石墨烯在强激光作用下改性的拉曼研究.  , 2012, 61(21): 214209. doi: 10.7498/aps.61.214209
    [18] 高双红, 任兆玉, 郭平, 郑继明, 杜恭贺, 万丽娟, 郑琳琳. 石墨烯量子点的磁性及激发态性质.  , 2011, 60(4): 047105. doi: 10.7498/aps.60.047105
    [19] 何建勇, 隆正文, 龙超云, 蔡绍洪. 电场作用下CaS的分子结构和电子光谱.  , 2010, 59(3): 1651-1657. doi: 10.7498/aps.59.1651
    [20] 黄多辉, 王藩侯, 闵军, 朱正和. 外电场作用下MgO分子的特性研究.  , 2009, 58(5): 3052-3057. doi: 10.7498/aps.58.3052
计量
  • 文章访问数:  7423
  • PDF下载量:  346
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-21
  • 修回日期:  2018-01-19
  • 刊出日期:  2018-04-05

/

返回文章
返回
Baidu
map