搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用

刘学文 朱重阳 董辉 徐峰 孙立涛

引用本文:
Citation:

二硒化铁/还原氧化石墨烯的制备及其在染料敏化太阳能电池中的应用

刘学文, 朱重阳, 董辉, 徐峰, 孙立涛

Preparation of iron diselenide/reduced graphene oxide composite and its application in dyesensitized solar cells

Liu Xue-Wen, Zhu Chong-Yang, Dong Hui, Xu Feng, Sun Li-Tao
PDF
导出引用
  • 通过水热反应合成出二硒化铁/还原氧化石墨烯(FeSe2/rGO)复合材料, 并将其作为对电极材料应用于染料敏化太阳能电池(DSSC). 利用X射线衍射、拉曼光谱、场发射扫描电子显微镜和高分辨透射电子显微镜对FeSe2/rGO的结构和形貌进行了表征. 利用循环伏安法、电化学阻抗谱和Tafel曲线测试分析了FeSe2/rGO对电极的电催化活性. 结果表明: FeSe2呈纳米棒结构, 长度在100-200 nm之间, 且紧密地附着在rGO 的表面, FeSe2/rGO对电极对I3-的还原具有很好的催化活性. 电池的J-V曲线测试显示: 基于FeSe2/rGO对电极的DSSC的转换效率达到了8.90%, 相比基于单纯的FeSe2对电极的DSSC(7.91%)和rGO对电极的DSSC(5.24%)都有了显著提高, 甚至优于铂对电极的DSSC(8.52%).
    In recent years, dye-sensitized solar cells (DSSCs) have attracted much attention because of their easy fabrication, good flexibility low cost and relatively high efficiency. As a crucial component, the function of counter electrode (CE) is to collect the electrons from external circuits and transfer them to electrolyte by catalyzing the reduction of I3- into I-. Platinum (Pt) is a conventional material of CE in DSSCs due to its high conductivity and outstanding catalytic activity towards the reduction of triiodide (I3-). However, the high cost and low abundance of Pt restrict the commercial application of DSSCs. Moreover, Pt could be dissolved slowly in the I-/I3- redox electrolyte, which will deteriorate the long term stability of DSSCs. Therefore, it is necessary to explore novel material with high conductivity, catalytic activity and stability to replace Pt. In this paper, with Fe(NO3)39H2O and graphene oxide (GO) serving as raw materials and deionized water as the solvent, we synthesize iron diselenide (FeSe2) nanorods (with diameters in a range of about 100-200 nm)/reduced graphene oxide (rGO) composite through a facile hydrothermal method and use the composite as CE material of DSSCs for the first time. The structure and morphology of FeSe2/rGO are characterized by using X-ray diffraction (XRD), Raman spectrum, field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The XRD pattern shows that the FeSe2 is typically orthorhombic phase. The SEM images show that the FeSe2 has a structure of nanonods and can be attached to the surface of rGO closely The surface of FeSe2/rGO composite is rough and exhibits a porous structure. The TEM image shows that the FeSe2 has a high degree of crystallinity and orientation. To evaluate the catalytic activity and conductivity of FeSe2/rGO, we perform cyclic voltammetry (CV) measurements, electrochemical impedance spectroscopy and obtain Tafel polarization curves for FeSe2/rGO electrode and also for Pt, FeSe2 and rGO electrodes for comparison. The results indicate that the CE based on FeSe2/rGO composites has the lowest peak-to-peak voltage separation (E_{pp}) charge transfer resistance (Rct) and series resistance (Rs) in the four different CEs, suggesting that the FeSe2/rGO CE has an excellent electrocatalytic performance for the reduction I3-. The current density-voltage (J-V) curves of DSSCs with different CEs under the illumination of 1 sun (100 mW cm-2) show that the cell with FeSe2/rGO CE has an open-circuit voltage (Voc) of 0.727 V, a short-circuit current (Jsc) of 18.94 mA cm-2, a fill factor (FF) of 0.65 and an excellent power conversion efficiency (PCE) of 8.90%, which is a notable improvement compared with the PCE of the cell with an FeSe2 CE (7.91%) and an rGO CE (5.24%). It can be attributed to the synergetic effects between the FeSe2 nanorods and rGO which eventually improve the PCE of DSSC We also conducte the experiments on the electrochemical stability of FeSe2/rGO CE by sequential CV measurements the result indicates that the FeSe2/rGO composite has a better stability than Pt in I-/I3- electrolyte In summary, we synthesize a novel FeSe2/rGO conductive catalyst. This hybrid material possesses the features of FeSe2 and rGO, exhibiting both highly catalytic activity and high conductivity Therefore, the low-cost and high-performance FeSe2/rGO composite can be a promising CE material to replace Pt in the large-scale industrial production of DSSCs.
      通信作者: 孙立涛, slt@seu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61574034, 51372039, 11525415, 51420105003)资助的课题.
      Corresponding author: Sun Li-Tao, slt@seu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos 61574034, 51372039, 11525415, 51420105003).
    [1]

    O'regan B, Grtzel M 1991 Nature 353 737

    [2]

    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M, Grtzel M 2014 Nature Chem. 6 242

    [3]

    Xu F, Sun L 2011 Energy Environ. Sci. 4 818

    [4]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 11810

    [5]

    Lee W J, Ramasamy E, Lee D Y, Song J S 2008 Sol. Energy Mater. Sol. Cells 92 814

    [6]

    Kwon J, Ganapathy V, Kim Y H, Song K D, Park H G, Jun Y, Yoo P J, Park J H 2013 Nanoscale 5 7838

    [7]

    Thomas S, Deepak T G, Anjusree G S, Arun T A, Nair S V, Nair A S 2014 J. Mater. Chem. A 2 4474

    [8]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese) [黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 64 038103]

    [9]

    Wu M, Lin X, Wang T, Qiu J, Ma T 2011 Energy Environ. Sci. 4 2308

    [10]

    Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin M K, Marsan B, Zakeeruddin S M, Grtzel M 2012 Energy Environ. Sci. 5 6089

    [11]

    Li Z, Gong F, Zhou G, Wang Z S 2013 J. Phys. Chem. C 117 6561

    [12]

    Bi E, Chen H, Yang X, Peng W, Grtzel M, Han L 2014 Energy Environ. Sci. 7 2637

    [13]

    Tai S Y, Liu C J, Chou S W, Chien S S, Lin J Y, Lin T W 2012 J. Mater. Chem. 22 24753

    [14]

    Zhou H, Yin J, Nie Z, Yang Z, Li D, Wang J, Liu X, Jin C, Zhang X, Ma T 2016 J. Mater. Chem. A 4 67

    [15]

    Huang S, He Q, Chen W, Qiao Q, Zai J, Qian X 2015 Chem. Eur. J. 21 4085

    [16]

    Wang H, Hu Y H 2012 Energy Environ. Sci. 5 8182

    [17]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [18]

    Bi H, Xie X, Yin K, Zhou Y, Wan S, Ruoff R S, Sun L 2014 J. Mater. Chem. A 2 1652

    [19]

    Ito S, Murakami T N, Comte P, Liska P, Grtzel C, Nazeeruddin M K, Grtzel M 2008 Thin Solid films 516 4613

    [20]

    Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H 2009 Adv. Funct. Mater. 19 1987

    [21]

    Stankovich S, Dikin D A, Piner R D, Khlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [22]

    Boschloo G, Hagfeldt A 2009 Acc. Chem. Res. 42 1819

    [23]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 118101

    [24]

    Zhu C, Min H, Xu F, Chen J, Dong H, Tong L, Zhu Y, Sun L 2015 RSC Adv. 5 85822

    [25]

    Kavan L, Yum J H, Gra zel M 2010 Acs Nano 5 165

    [26]

    Zhu C, Xu F, Chen J, Min H, Dong H, Tong L, Qasim K, Li S, Sun L 2016 J. Power Sources 303 159

  • [1]

    O'regan B, Grtzel M 1991 Nature 353 737

    [2]

    Mathew S, Yella A, Gao P, Humphry-Baker R, Curchod B F, Ashari-Astani N, Tavernelli I, Rothlisberger U, Nazeeruddin M, Grtzel M 2014 Nature Chem. 6 242

    [3]

    Xu F, Sun L 2011 Energy Environ. Sci. 4 818

    [4]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 11810

    [5]

    Lee W J, Ramasamy E, Lee D Y, Song J S 2008 Sol. Energy Mater. Sol. Cells 92 814

    [6]

    Kwon J, Ganapathy V, Kim Y H, Song K D, Park H G, Jun Y, Yoo P J, Park J H 2013 Nanoscale 5 7838

    [7]

    Thomas S, Deepak T G, Anjusree G S, Arun T A, Nair S V, Nair A S 2014 J. Mater. Chem. A 2 4474

    [8]

    Huang L Q, Zhou L Y, Yu W, Yang D, Zhang J, Li C 2015 Acta Phys. Sin. 64 038103 (in Chinese) [黄林泉, 周玲玉, 于为, 杨栋, 张坚, 李灿 2015 64 038103]

    [9]

    Wu M, Lin X, Wang T, Qiu J, Ma T 2011 Energy Environ. Sci. 4 2308

    [10]

    Burschka J, Brault V, Ahmad S, Breau L, Nazeeruddin M K, Marsan B, Zakeeruddin S M, Grtzel M 2012 Energy Environ. Sci. 5 6089

    [11]

    Li Z, Gong F, Zhou G, Wang Z S 2013 J. Phys. Chem. C 117 6561

    [12]

    Bi E, Chen H, Yang X, Peng W, Grtzel M, Han L 2014 Energy Environ. Sci. 7 2637

    [13]

    Tai S Y, Liu C J, Chou S W, Chien S S, Lin J Y, Lin T W 2012 J. Mater. Chem. 22 24753

    [14]

    Zhou H, Yin J, Nie Z, Yang Z, Li D, Wang J, Liu X, Jin C, Zhang X, Ma T 2016 J. Mater. Chem. A 4 67

    [15]

    Huang S, He Q, Chen W, Qiao Q, Zai J, Qian X 2015 Chem. Eur. J. 21 4085

    [16]

    Wang H, Hu Y H 2012 Energy Environ. Sci. 5 8182

    [17]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [18]

    Bi H, Xie X, Yin K, Zhou Y, Wan S, Ruoff R S, Sun L 2014 J. Mater. Chem. A 2 1652

    [19]

    Ito S, Murakami T N, Comte P, Liska P, Grtzel C, Nazeeruddin M K, Grtzel M 2008 Thin Solid films 516 4613

    [20]

    Shin H J, Kim K K, Benayad A, Yoon S M, Park H K, Jung I S, Jin M H, Jeong H K, Kim J M, Choi J Y, Lee Y H 2009 Adv. Funct. Mater. 19 1987

    [21]

    Stankovich S, Dikin D A, Piner R D, Khlhaas K A, Kleinhammes A, Jia Y, Wu Y, Nguyen S T, Ruoff R S 2007 Carbon 45 1558

    [22]

    Boschloo G, Hagfeldt A 2009 Acc. Chem. Res. 42 1819

    [23]

    Li P J, Chen K, Chen Y F, Wang Z G, Hao X, Liu J B, He J R, Zhang W L 2012 Chin. Phys. B 21 118101

    [24]

    Zhu C, Min H, Xu F, Chen J, Dong H, Tong L, Zhu Y, Sun L 2015 RSC Adv. 5 85822

    [25]

    Kavan L, Yum J H, Gra zel M 2010 Acs Nano 5 165

    [26]

    Zhu C, Xu F, Chen J, Min H, Dong H, Tong L, Qasim K, Li S, Sun L 2016 J. Power Sources 303 159

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算.  , 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 王伟华. 二维有限元方法研究石墨烯环中磁等离激元.  , 2023, 72(8): 087301. doi: 10.7498/aps.72.20222467
    [3] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展.  , 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [4] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构.  , 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [5] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究.  , 2022, 0(0): . doi: 10.7498/aps.7120221057
    [6] 沈艳丽, 史冰融, 吕浩, 张帅一, 王霞. 基于石墨烯的Au纳米颗粒增强染料随机激光.  , 2022, 71(3): 034206. doi: 10.7498/aps.71.20211613
    [7] 苑营阔, 郭伟玲, 杜在发, 钱峰松, 柳鸣, 王乐, 徐晨, 严群, 孙捷. 石墨烯晶体管优化制备工艺在单片集成驱动氮化镓微型发光二极管中的应用.  , 2021, 70(19): 197801. doi: 10.7498/aps.70.20210122
    [8] 王波, 张纪红, 李聪颖. 石墨烯增强半导体态二氧化钒近场热辐射.  , 2021, 70(5): 054207. doi: 10.7498/aps.70.20201360
    [9] 徐翔, 张莹, 闫庆, 刘晶晶, 王骏, 徐新龙, 华灯鑫. 不同堆垛结构二硫化铼/石墨烯异质结的光电化学特性.  , 2021, 70(9): 098203. doi: 10.7498/aps.70.20201904
    [10] 赵雯琪, 张岱, 崔明慧, 杜颖, 张树宇, 区琼荣. 等离子体对石墨烯的功能化改性.  , 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [11] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [12] 张玉响, 彭倚天, 郎浩杰. 基于原子力显微镜的石墨烯表面图案化摩擦调控.  , 2020, 69(10): 106801. doi: 10.7498/aps.69.20200124
    [13] 张源, 陈晨, 李美亚, 罗山梦黛. 石墨烯与复合纳米结构SiO2@Au对染料敏化太阳能电池性能的协同优化.  , 2020, 69(16): 160201. doi: 10.7498/aps.69.20191722
    [14] 陈卓, 方磊, 陈远富. 三维多孔复合碳层对电极的制备及其光伏性能研究.  , 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [15] 郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏. 具有石墨烯/铟锑氧化物复合透明电极的GaN发光二极管.  , 2019, 68(24): 247303. doi: 10.7498/aps.68.20190983
    [16] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究.  , 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [17] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性.  , 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [18] 俎凤霞, 张盼盼, 熊伦, 殷勇, 刘敏敏, 高国营. 以石墨烯为电极的有机噻吩分子整流器的设计及电输运特性研究.  , 2017, 66(9): 098501. doi: 10.7498/aps.66.098501
    [19] 吴春艳, 杜晓薇, 周麟, 蔡奇, 金妍, 唐琳, 张菡阁, 胡国辉, 金庆辉. 顶栅石墨烯离子敏场效应管的表征及其初步应用.  , 2016, 65(8): 080701. doi: 10.7498/aps.65.080701
    [20] 周丽, 魏源, 黄志祥, 吴先良. 基于FDFD方法研究含石墨烯薄膜太阳能电池的电磁特性.  , 2015, 64(1): 018101. doi: 10.7498/aps.64.018101
计量
  • 文章访问数:  7381
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-27
  • 修回日期:  2016-03-04
  • 刊出日期:  2016-06-05

/

返回文章
返回
Baidu
map