搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铟镓锌氧薄膜晶体管的悬浮栅效应研究

覃婷 黄生祥 廖聪维 于天宝 罗衡 刘胜 邓联文

引用本文:
Citation:

铟镓锌氧薄膜晶体管的悬浮栅效应研究

覃婷, 黄生祥, 廖聪维, 于天宝, 罗衡, 刘胜, 邓联文

Floating gate effect in amorphous InGaZnO thin-film transistor

Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Luo Heng, Liu Sheng, Deng Lian-Wen
PDF
导出引用
  • 为了避免光照对铟镓锌氧薄膜晶体管(InGaZnO thin film transistors,IGZO TFTs)电学特性的影响,IGZO TFT要增加遮光金属层.本文研究了遮光金属栅极悬浮时,IGZO TFT的输出特性.采用器件数值计算工具TCAD(technology computer-aided design)分析了IGZO层与栅介质层界面处电势分布,证实了悬浮栅(floating gate,FG) IGZO TFT输出曲线的不饱和现象是由悬浮栅与TFT漏端的电容耦合造成.基于等效电容的电压分配方法,提出了悬浮栅IGZO TFT电流的一阶模型.TCAD数值分析及一阶物理模型结果与测试具有较高程度的符合,较完整地解释了悬浮栅IGZO TFT的电学特性.
    In recent years, considerable attention has been paid to amorphous indium gallium-zinc-oxide (a-IGZO) thin film transistors (TFTs) for high performance flat panel display, such as liquid-crystal displays (LCDs), active-matrix organic light-emitting diode (AMOLED) display and flexible display. This is because IGZO TFTs are more suitable for pixels and circuit integrations on display panel than the conventional silicon-based devices. The merits of IGZO TFT technology include high mobility, decent reliability, low manufacturing cost, and excellent uniformity over large fabrication area. However, it was reported that the electrical characteristics of IGZO TFT are susceptible to shift after electrical aging measurement under illumination, which is caused by the activation of trapped electrons from sub-gap states to conducting states. Therefore, it is necessary to introduce light shielding layer to suppress the electrical characteristic shift under illumination aging measurements. Lim et al. demonstrated the characteristics of IGZO TFT with additional light shielding metal layer, and proved that the threshold voltage of TFT can be tuned linearly by adjusting the biasing voltage of the light shielding metal. Taking advantage of this tunable threshold voltage, AMOLED pixel circuit with a threshold voltage shift compensation function can be implemented. However, drawback of this method lies in the adding of additional biasing line, which increases the circuit area and restricts the integration of high-resolution pixel circuits. Thus, Zan et al. proposed adopting floating (unbiased) light shielding metal layer to improve the characteristics of device. However, Zeng et al. demonstrated the abnormal output characteristics of the IGZO TFT, as it cannot be saturated due to the introduction of floating light shielding metal layer. It seems that the IGZO TFT with floating metal is different from the conventional double-gate or single gate structure. To date, the current conducting mechanism of IGZO TFT with floating metal has not been discussed yet. In this paper, the distribution of electrical potential in the IGZO TFT with a cross sectional view is thoroughly analyzed. It is confirmed that the abnormal output characteristic of IGZO TFT is caused by the capacitive coupling between the floating gate and the drain electrode of the transistor. On the basis of the voltage distribution relationship between the equivalent capacitances, a threshold-voltage-dependent current-voltage model is proposed. The simulated results by technology computer-aided design tool and those by the proposed model are in good agreement with each other. Therefore, the mechanism of floating gate effect for IGZO TFT is comprehensively demonstrated. The illustrated conducting mechanism and the proposed current-voltage model are helpful in developing the device and process of IGZO TFT with novel structure.
      通信作者: 廖聪维, 289114489@qq.com
    • 基金项目: 国家重点研发计划(批准号:2017YFA0204600)、国家自然科学基金(批准号:61404002)和中南大学中央高校基本科研业务费专项(批准号:2017zzts704)资助的课题.
      Corresponding author: Liao Cong-Wei, 289114489@qq.com
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0204600), the National Natural Science Foundation of China (Grant No. 61404002), and the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2017zzts704).
    [1]

    Arai T 2012 J. Soc. Inf. Display 20 156

    [2]

    Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese)[李喜峰, 信恩龙, 石继锋, 陈龙龙, 李亚春, 张建华 2013 62 108503]

    [3]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese)[徐飘荣, 强蕾, 姚若河 2015 64 137101]

    [4]

    Kim Y, Kim Y, Lee H 2014 J. Display Technol. 10 80

    [5]

    Qian C, Sun J, Zhang L, Huang H, Yang J, Gao Y 2015 J. Phys. Chem. C 119 14965

    [6]

    Zhang C, Luo Q, Wu H, Li H, Lai J, Ji G, Yan L, Wang X, Zhang D, Lin J, Chen L, Yang J, Ma C 2017 Organic Electron. 45 190

    [7]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Organic Electron. 33 311

    [8]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A:Mater. Sci. Process. 122 311

    [9]

    Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Hung M C, Tu C H, Chang J J, Chen P L 2010 Appl. Phys. Lett. 97 192103

    [10]

    Oh H, Yoon S M, Ryu M K, Hwang C S, Yang S, Park S H K 2010 Appl. Phys. Lett. 97 183502

    [11]

    Oh H, Yoon S M, Ryu M K, Hwang C S, Yang S, Park S H K 2011 Appl. Phys. Lett. 98 033504

    [12]

    Chen W T, Hsueh H W, Zan H W, Tsai C C 2011 Electrochem. Solid-State Lett. 14 H297

    [13]

    Zeng M, Chen S, Liu X D, Zeng L M, Li W Y, Shi L Q, Li S, Chou Y F, Liu X, Lee C 2017 Sid Symposium Digest of Technical Papers 48 1234

    [14]

    Lim H, Yin H, Park J S, Song I, Kim C, Park J, Kim S, Kim S W, Lee C B, Kim Y C, Park Y S, Kang D 2008 Appl. Phys. Lett. 93 063505

    [15]

    Takechi K, Nakata M, Azuma K, Yamaguchi H, Kaneko S 2009 IEEE Trans. Electron Dev. 56 2027

    [16]

    Park J S, Jeong J K, Mo Y G, Kim H D, Kim C J 2008 Appl. Phys. Lett. 93 033513

    [17]

    Seok M J, Choi M H, Mativenga M, Geng D, Kim D Y, Jang J 2011 IEEE Electron Dev. Lett. 32 1089

    [18]

    Abe K, Takahashi K, Sato A 2012 IEEE Trans. Electron Devi. 59 1928

    [19]

    Baek G, Kanicki J 2012 J. Soc. Inf. Disp. 20 237

    [20]

    Seok M J, Mativenga M, Geng D, Jang J 2013 IEEE Electron Dev. Lett. 60 3787

    [21]

    Zan H W, Chen W T, Yeh C C, Hsueh H W, Tsai C C, Meng H F 2011 Appl. Phys. Lett. 98 153506

    [22]

    Qin T, Huang S X, Liao C W, Yu T B, Deng L W 2017 Acta Phys. Sin. 66 097101

    [23]

    Ning H L, Hu S B, Zhu F, Yao R H, Xu M, Zou J H, Tao H, Xu R X, Xu H, Wang L, Lan L F, Peng J B 2015 Acta Phys. Sin. 64 126103 (in Chinese)[宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊虎 2015 64 126103]

    [24]

    Zhao J Q, Yu P F, Qiu S, Zhao Q H, Feng L R, Ogier S, Tang W, Fan J L, Liu W J, Liu Y P, Guo X J 2017 IEEE Electron Dev. Lett. 64 2030

  • [1]

    Arai T 2012 J. Soc. Inf. Display 20 156

    [2]

    Li X F, Xin E L, Shi J F, Chen L L, Li C Y, Zhang J H 2013 Acta Phys. Sin. 62 108503 (in Chinese)[李喜峰, 信恩龙, 石继锋, 陈龙龙, 李亚春, 张建华 2013 62 108503]

    [3]

    Xu P R, Qiang L, Yao R H 2015 Acta Phys. Sin. 64 137101 (in Chinese)[徐飘荣, 强蕾, 姚若河 2015 64 137101]

    [4]

    Kim Y, Kim Y, Lee H 2014 J. Display Technol. 10 80

    [5]

    Qian C, Sun J, Zhang L, Huang H, Yang J, Gao Y 2015 J. Phys. Chem. C 119 14965

    [6]

    Zhang C, Luo Q, Wu H, Li H, Lai J, Ji G, Yan L, Wang X, Zhang D, Lin J, Chen L, Yang J, Ma C 2017 Organic Electron. 45 190

    [7]

    Zheng Z, Jiang J, Guo J, Sun J, Yang J 2016 Organic Electron. 33 311

    [8]

    Liu F, Qian C, Sun J, Liu P, Huang Y, Gao Y, Yang J 2016 Appl. Phys. A:Mater. Sci. Process. 122 311

    [9]

    Chen T C, Chang T C, Hsieh T Y, Tsai C T, Chen S C, Lin C S, Hung M C, Tu C H, Chang J J, Chen P L 2010 Appl. Phys. Lett. 97 192103

    [10]

    Oh H, Yoon S M, Ryu M K, Hwang C S, Yang S, Park S H K 2010 Appl. Phys. Lett. 97 183502

    [11]

    Oh H, Yoon S M, Ryu M K, Hwang C S, Yang S, Park S H K 2011 Appl. Phys. Lett. 98 033504

    [12]

    Chen W T, Hsueh H W, Zan H W, Tsai C C 2011 Electrochem. Solid-State Lett. 14 H297

    [13]

    Zeng M, Chen S, Liu X D, Zeng L M, Li W Y, Shi L Q, Li S, Chou Y F, Liu X, Lee C 2017 Sid Symposium Digest of Technical Papers 48 1234

    [14]

    Lim H, Yin H, Park J S, Song I, Kim C, Park J, Kim S, Kim S W, Lee C B, Kim Y C, Park Y S, Kang D 2008 Appl. Phys. Lett. 93 063505

    [15]

    Takechi K, Nakata M, Azuma K, Yamaguchi H, Kaneko S 2009 IEEE Trans. Electron Dev. 56 2027

    [16]

    Park J S, Jeong J K, Mo Y G, Kim H D, Kim C J 2008 Appl. Phys. Lett. 93 033513

    [17]

    Seok M J, Choi M H, Mativenga M, Geng D, Kim D Y, Jang J 2011 IEEE Electron Dev. Lett. 32 1089

    [18]

    Abe K, Takahashi K, Sato A 2012 IEEE Trans. Electron Devi. 59 1928

    [19]

    Baek G, Kanicki J 2012 J. Soc. Inf. Disp. 20 237

    [20]

    Seok M J, Mativenga M, Geng D, Jang J 2013 IEEE Electron Dev. Lett. 60 3787

    [21]

    Zan H W, Chen W T, Yeh C C, Hsueh H W, Tsai C C, Meng H F 2011 Appl. Phys. Lett. 98 153506

    [22]

    Qin T, Huang S X, Liao C W, Yu T B, Deng L W 2017 Acta Phys. Sin. 66 097101

    [23]

    Ning H L, Hu S B, Zhu F, Yao R H, Xu M, Zou J H, Tao H, Xu R X, Xu H, Wang L, Lan L F, Peng J B 2015 Acta Phys. Sin. 64 126103 (in Chinese)[宁洪龙, 胡诗犇, 朱峰, 姚日晖, 徐苗, 邹建华, 陶洪, 徐瑞霞, 徐华, 王磊, 兰林锋, 彭俊虎 2015 64 126103]

    [24]

    Zhao J Q, Yu P F, Qiu S, Zhao Q H, Feng L R, Ogier S, Tang W, Fan J L, Liu W J, Liu Y P, Guo X J 2017 IEEE Electron Dev. Lett. 64 2030

  • [1] 赵泽贤, 徐萌, 彭聪, 张涵, 陈龙龙, 张建华, 李喜峰. 喷墨打印高迁移率铟锌锡氧化物薄膜晶体管.  , 2024, 73(12): 128501. doi: 10.7498/aps.73.20240361
    [2] 刘贤哲, 张旭, 陶洪, 黄健朗, 黄江夏, 陈艺涛, 袁炜健, 姚日晖, 宁洪龙, 彭俊彪. 溶胶-凝胶法制备氧化锡基薄膜及薄膜晶体管的研究进展.  , 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [3] 邓小庆, 邓联文, 何伊妮, 廖聪维, 黄生祥, 罗衡. InGaZnO薄膜晶体管泄漏电流模型.  , 2019, 68(5): 057302. doi: 10.7498/aps.68.20182088
    [4] 邵龑, 丁士进. 氢元素对铟镓锌氧化物薄膜晶体管性能的影响.  , 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [5] 梁定康, 陈义豪, 徐威, 吉新村, 童祎, 吴国栋. 基于蛋清栅介质的超低压双电层薄膜晶体管.  , 2018, 67(23): 237302. doi: 10.7498/aps.67.20181539
    [6] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性.  , 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [7] 覃婷, 黄生祥, 廖聪维, 于天宝, 邓联文. 同步对称双栅InGaZnO薄膜晶体管电势模型研究.  , 2017, 66(9): 097101. doi: 10.7498/aps.66.097101
    [8] 兰林锋, 张鹏, 彭俊彪. 氧化物薄膜晶体管研究进展.  , 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [9] 王静, 刘远, 刘玉荣, 吴为敬, 罗心月, 刘凯, 李斌, 恩云飞. 铟锌氧化物薄膜晶体管局域态分布的提取方法.  , 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [10] 张世玉, 喻志农, 程锦, 吴德龙, 栗旭阳, 薛唯. 退火温度和Ga含量对溶液法制备InGaZnO薄膜晶体管性能的影响.  , 2016, 65(12): 128502. doi: 10.7498/aps.65.128502
    [11] 徐飘荣, 强蕾, 姚若河. 一个非晶InGaZnO薄膜晶体管线性区陷阱态的提取方法.  , 2015, 64(13): 137101. doi: 10.7498/aps.64.137101
    [12] 徐华, 兰林锋, 李民, 罗东向, 肖鹏, 林振国, 宁洪龙, 彭俊彪. 源漏电极的制备对氧化物薄膜晶体管性能的影响.  , 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [13] 张耕铭, 郭立强, 赵孔胜, 颜钟惠. 氧对IZO低压无结薄膜晶体管稳定性的影响.  , 2013, 62(13): 137201. doi: 10.7498/aps.62.137201
    [14] 李喜峰, 信恩龙, 石继锋, 陈龙龙, 李春亚, 张建华. 低温透明非晶IGZO薄膜晶体管的光照稳定性.  , 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [15] 吴萍, 张杰, 李喜峰, 陈凌翔, 汪雷, 吕建国. 室温生长ZnO薄膜晶体管的紫外响应特性.  , 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [16] 陈晓雪, 姚若河. 基于表面势的氢化非晶硅薄膜晶体管直流特性研究.  , 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管.  , 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [18] 强蕾, 姚若河. 非晶硅薄膜晶体管沟道中阈值电压及温度的分布.  , 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [19] 王雄, 才玺坤, 原子健, 朱夏明, 邱东江, 吴惠桢. 氧化锌锡薄膜晶体管的研究.  , 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] 徐天宁, 吴惠桢, 张莹莹, 王雄, 朱夏明, 原子健. In2O3 透明薄膜晶体管的制备及其电学性能的研究.  , 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
计量
  • 文章访问数:  7609
  • PDF下载量:  400
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-10-27
  • 修回日期:  2017-12-01
  • 刊出日期:  2019-02-20

/

返回文章
返回
Baidu
map