-
采用密度泛函理论计算分析的方法研究了Ca位Sr掺杂的CaMnO3基氧化物的电子性质和电性能;采用柠檬酸溶胶-凝胶法结合陶瓷烧结制备工艺制备了Ca位Sr掺杂的CaMnO3基氧化物块体试样,分析研究了所得试样的热电传输性能.结果表明,Sr掺杂CaMnO3氧化物仍然呈间接带隙型能带结构,带隙宽度由0.756 eV减小到0.711 eV.Sr掺杂CaMnO3氧化物费米能级附近的载流子有效质量均得到调控,载流子浓度也有所增大.Sr比Ca具有更强的释放电子能力,其掺杂在CaMnO3氧化物中表现为n型.Sr掺杂的CaMnO3基氧化物材料电阻率大幅度降低,Seebeck系数绝对值较本征CaMnO3基氧化物材料有一定程度的增大,Sr掺杂量为0.06和0.12的Ca1-xSrxMnO3(x=0.06,0.12)试样,其373 K的电阻率分别降低至本征CaMnO3基氧化物材料的25%和21%,其373 K的Seebeck系数绝对值分别是本征CaMnO3基氧化物材料的112.9%和111.1%,Sr掺杂有效提高了CaMnO3基氧化物材料的热电性能.The electronic and the electrical properties of the Sr doped CaMnO3 oxide for Ca site are studied by the density funtional theory calculation method. The Sr doped CaMnO3 oxide bulk samples are prepared by the citrate acid sol-gel method as well as the ceramic preparation method, and the thermoelectric transport properties are analyzed. The results show that the Sr doped CaMnO3 oxide still has the indirect band gap yet with the band gap energy slightly decreasing from 0.756 eV to 0.711 eV. The effective mass of carrier near Fermi level is modified and the carrier density near Fermi level is also increased. The ability to release electrons of Sr is stronger than that of the Ca, and the Sr acts as n-type donor doping specy within the CaMnO3 compound. The electrical resistivity values remarkably decrease for the Sr doped CaMnO3 oxide materials. The Seebeck coefficient increases slightly to a certain extent compared with that of the intrinsic CaMnO3. The resistivity values for the Ca1-xSrxMnO3 (x=0.06, 0.12) samples at 373 K decrease to 25% and 21% of the un-doped intrinsic CaMnO3 sample, respectively. The Seebeck coefficients for the Ca1-xSrxMnO3 (x=0.06, 0.12) samples at 373 K increase to as high as 112.9% and 111.1% of the Seebeck coefficient for un-doped intrinsic sample, respectively. The thermoelectric performance is effectively enhanced by Sr doping for the CaMnO3 oxide material.
-
Keywords:
- CaMnO3 /
- Sr doping /
- electronic properties /
- thermoelectric properties
[1] Poeppelmeier K R, Leonowicz M E, Scanlon J C, Longo J M 1982 J. Solid State Chem. 45 71
[2] Xu G, Funahashi R, Pu Q, Liu B, Tao R, Wang G, Ding Z 2004 Solid State Ionics 171 147
[3] Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215
[4] Zhang F P, Lu Q M, Zhang X, Zhang J X 2011 J. Alloys Compd. 509 542
[5] Zhang F P, Zhang X, Lu Q M, Zhang J X, Liu Y Q, Fan R F, Zhang G Z 2011 Physica B 406 1258
[6] Zhang F P, Zhang X, Lu Q M, Zhang J X, Liu Y Q 2011 J. Alloys Compd. 509 4171
[7] Zhang R Z, Hu X Y, Guo P, Wang C L 2012 Physica B 407 1114
[8] Wang Y, Sui Y, Wang X J, Su W H 2011 Appl. Phys. A 104 135
[9] Zhang X H, Li J C, Du Y L, Wang F N, Liu H Z, Zhu Y H, Liu J, Su W B, Wang C L, Mei L M 2015 J. Alloys Compd. 634 1
[10] Zhang F P, Zhang X, Lu Q M, Liu Y Q, Zhang J X 2011 Acta Phys. Sin. 60 087205 (in Chinese) [张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴 2011 60 087205]
[11] Zhang F P, Lu Q M, Zhang X, Zhang J X 2013 J. Phys. Chem. Solids 74 1859
[12] Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504
[13] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218
[14] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 19918
[15] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 92473
[16] Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356
[17] Zhao Y Q, Wu L J, Liu B, Wang L Z, He P B, Cai M Q 2016 J. Power Sources 313 96
[18] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202
[19] Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188
[20] Li J C, Wang C L, Wang M X, Peng H, Zhang R Z, Zhao M L, Liu J, Zhang J L, Mei L M 2009 J. Appl. Phys. 105 043503
[21] Zhu T J, Xiao K, Yu C, Shen J J, Yang S H, Zhou A J, Zhao X B, He J 2010 J. Appl. Phys. 108 044903
[22] Peng J Y, Liu X Y, Fu L W, Xu W, Liu Q Z, Yang J Y 2012 J. Alloys Compd. 521 141
-
[1] Poeppelmeier K R, Leonowicz M E, Scanlon J C, Longo J M 1982 J. Solid State Chem. 45 71
[2] Xu G, Funahashi R, Pu Q, Liu B, Tao R, Wang G, Ding Z 2004 Solid State Ionics 171 147
[3] Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215
[4] Zhang F P, Lu Q M, Zhang X, Zhang J X 2011 J. Alloys Compd. 509 542
[5] Zhang F P, Zhang X, Lu Q M, Zhang J X, Liu Y Q, Fan R F, Zhang G Z 2011 Physica B 406 1258
[6] Zhang F P, Zhang X, Lu Q M, Zhang J X, Liu Y Q 2011 J. Alloys Compd. 509 4171
[7] Zhang R Z, Hu X Y, Guo P, Wang C L 2012 Physica B 407 1114
[8] Wang Y, Sui Y, Wang X J, Su W H 2011 Appl. Phys. A 104 135
[9] Zhang X H, Li J C, Du Y L, Wang F N, Liu H Z, Zhu Y H, Liu J, Su W B, Wang C L, Mei L M 2015 J. Alloys Compd. 634 1
[10] Zhang F P, Zhang X, Lu Q M, Liu Y Q, Zhang J X 2011 Acta Phys. Sin. 60 087205 (in Chinese) [张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴 2011 60 087205]
[11] Zhang F P, Lu Q M, Zhang X, Zhang J X 2013 J. Phys. Chem. Solids 74 1859
[12] Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504
[13] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218
[14] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 19918
[15] Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 92473
[16] Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356
[17] Zhao Y Q, Wu L J, Liu B, Wang L Z, He P B, Cai M Q 2016 J. Power Sources 313 96
[18] Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202
[19] Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188
[20] Li J C, Wang C L, Wang M X, Peng H, Zhang R Z, Zhao M L, Liu J, Zhang J L, Mei L M 2009 J. Appl. Phys. 105 043503
[21] Zhu T J, Xiao K, Yu C, Shen J J, Yang S H, Zhou A J, Zhao X B, He J 2010 J. Appl. Phys. 108 044903
[22] Peng J Y, Liu X Y, Fu L W, Xu W, Liu Q Z, Yang J Y 2012 J. Alloys Compd. 521 141
计量
- 文章访问数: 6202
- PDF下载量: 222
- 被引次数: 0