搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响

张飞鹏 张静文 张久兴 杨新宇 路清梅 张忻

引用本文:
Citation:

Sr掺杂对CaMnO3基氧化物电子性质及热电输运性能的影响

张飞鹏, 张静文, 张久兴, 杨新宇, 路清梅, 张忻

Effects of Sr doping on electronic and thermoelectrical transport properties of CaMnO3 based oxide

Zhang Fei-Peng, Zhang Jing-Wen, Zhang Jiu-Xing, Yang Xin-Yu, Lu Qing-Mei, Zhang Xin
PDF
导出引用
  • 采用密度泛函理论计算分析的方法研究了Ca位Sr掺杂的CaMnO3基氧化物的电子性质和电性能;采用柠檬酸溶胶-凝胶法结合陶瓷烧结制备工艺制备了Ca位Sr掺杂的CaMnO3基氧化物块体试样,分析研究了所得试样的热电传输性能.结果表明,Sr掺杂CaMnO3氧化物仍然呈间接带隙型能带结构,带隙宽度由0.756 eV减小到0.711 eV.Sr掺杂CaMnO3氧化物费米能级附近的载流子有效质量均得到调控,载流子浓度也有所增大.Sr比Ca具有更强的释放电子能力,其掺杂在CaMnO3氧化物中表现为n型.Sr掺杂的CaMnO3基氧化物材料电阻率大幅度降低,Seebeck系数绝对值较本征CaMnO3基氧化物材料有一定程度的增大,Sr掺杂量为0.06和0.12的Ca1-xSrxMnO3(x=0.06,0.12)试样,其373 K的电阻率分别降低至本征CaMnO3基氧化物材料的25%和21%,其373 K的Seebeck系数绝对值分别是本征CaMnO3基氧化物材料的112.9%和111.1%,Sr掺杂有效提高了CaMnO3基氧化物材料的热电性能.
    The electronic and the electrical properties of the Sr doped CaMnO3 oxide for Ca site are studied by the density funtional theory calculation method. The Sr doped CaMnO3 oxide bulk samples are prepared by the citrate acid sol-gel method as well as the ceramic preparation method, and the thermoelectric transport properties are analyzed. The results show that the Sr doped CaMnO3 oxide still has the indirect band gap yet with the band gap energy slightly decreasing from 0.756 eV to 0.711 eV. The effective mass of carrier near Fermi level is modified and the carrier density near Fermi level is also increased. The ability to release electrons of Sr is stronger than that of the Ca, and the Sr acts as n-type donor doping specy within the CaMnO3 compound. The electrical resistivity values remarkably decrease for the Sr doped CaMnO3 oxide materials. The Seebeck coefficient increases slightly to a certain extent compared with that of the intrinsic CaMnO3. The resistivity values for the Ca1-xSrxMnO3 (x=0.06, 0.12) samples at 373 K decrease to 25% and 21% of the un-doped intrinsic CaMnO3 sample, respectively. The Seebeck coefficients for the Ca1-xSrxMnO3 (x=0.06, 0.12) samples at 373 K increase to as high as 112.9% and 111.1% of the Seebeck coefficient for un-doped intrinsic sample, respectively. The thermoelectric performance is effectively enhanced by Sr doping for the CaMnO3 oxide material.
      通信作者: 张飞鹏, zhfp@emails.bjut.edu.cn,zhfp163@163.com
    • 基金项目: 国家自然科学基金(批准号:51572066)和河南省自然科学基金(批准号:162300410007)资助的课题.
      Corresponding author: Zhang Fei-Peng, zhfp@emails.bjut.edu.cn,zhfp163@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51572066) and the Natural Science Foundation of Henan Province, China (Grant No. 162300410007).
    [1]

    Poeppelmeier K R, Leonowicz M E, Scanlon J C, Longo J M 1982 J. Solid State Chem. 45 71

    [2]

    Xu G, Funahashi R, Pu Q, Liu B, Tao R, Wang G, Ding Z 2004 Solid State Ionics 171 147

    [3]

    Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215

    [4]

    Zhang F P, Lu Q M, Zhang X, Zhang J X 2011 J. Alloys Compd. 509 542

    [5]

    Zhang F P, Zhang X, Lu Q M, Zhang J X, Liu Y Q, Fan R F, Zhang G Z 2011 Physica B 406 1258

    [6]

    Zhang F P, Zhang X, Lu Q M, Zhang J X, Liu Y Q 2011 J. Alloys Compd. 509 4171

    [7]

    Zhang R Z, Hu X Y, Guo P, Wang C L 2012 Physica B 407 1114

    [8]

    Wang Y, Sui Y, Wang X J, Su W H 2011 Appl. Phys. A 104 135

    [9]

    Zhang X H, Li J C, Du Y L, Wang F N, Liu H Z, Zhu Y H, Liu J, Su W B, Wang C L, Mei L M 2015 J. Alloys Compd. 634 1

    [10]

    Zhang F P, Zhang X, Lu Q M, Liu Y Q, Zhang J X 2011 Acta Phys. Sin. 60 087205 (in Chinese) [张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴 2011 60 087205]

    [11]

    Zhang F P, Lu Q M, Zhang X, Zhang J X 2013 J. Phys. Chem. Solids 74 1859

    [12]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [13]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [14]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 19918

    [15]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 92473

    [16]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [17]

    Zhao Y Q, Wu L J, Liu B, Wang L Z, He P B, Cai M Q 2016 J. Power Sources 313 96

    [18]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [19]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [20]

    Li J C, Wang C L, Wang M X, Peng H, Zhang R Z, Zhao M L, Liu J, Zhang J L, Mei L M 2009 J. Appl. Phys. 105 043503

    [21]

    Zhu T J, Xiao K, Yu C, Shen J J, Yang S H, Zhou A J, Zhao X B, He J 2010 J. Appl. Phys. 108 044903

    [22]

    Peng J Y, Liu X Y, Fu L W, Xu W, Liu Q Z, Yang J Y 2012 J. Alloys Compd. 521 141

  • [1]

    Poeppelmeier K R, Leonowicz M E, Scanlon J C, Longo J M 1982 J. Solid State Chem. 45 71

    [2]

    Xu G, Funahashi R, Pu Q, Liu B, Tao R, Wang G, Ding Z 2004 Solid State Ionics 171 147

    [3]

    Zhang C, Wang C L, Li J C, Yang K, Zhang Y F, Wu Q Z 2008 Mater. Chem. Phys. 107 215

    [4]

    Zhang F P, Lu Q M, Zhang X, Zhang J X 2011 J. Alloys Compd. 509 542

    [5]

    Zhang F P, Zhang X, Lu Q M, Zhang J X, Liu Y Q, Fan R F, Zhang G Z 2011 Physica B 406 1258

    [6]

    Zhang F P, Zhang X, Lu Q M, Zhang J X, Liu Y Q 2011 J. Alloys Compd. 509 4171

    [7]

    Zhang R Z, Hu X Y, Guo P, Wang C L 2012 Physica B 407 1114

    [8]

    Wang Y, Sui Y, Wang X J, Su W H 2011 Appl. Phys. A 104 135

    [9]

    Zhang X H, Li J C, Du Y L, Wang F N, Liu H Z, Zhu Y H, Liu J, Su W B, Wang C L, Mei L M 2015 J. Alloys Compd. 634 1

    [10]

    Zhang F P, Zhang X, Lu Q M, Liu Y Q, Zhang J X 2011 Acta Phys. Sin. 60 087205 (in Chinese) [张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴 2011 60 087205]

    [11]

    Zhang F P, Lu Q M, Zhang X, Zhang J X 2013 J. Phys. Chem. Solids 74 1859

    [12]

    Cao D, Liu B, Yu H L, Hu W Y, Cai M Q 2013 Eur. Phys. J. B 86 504

    [13]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 J. Magn. Magn. Mater. 420 218

    [14]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 19918

    [15]

    Liu B, Wu L J, Zhao Y Q, Wang L Z, Cai M Q 2016 RSC Adv. 6 92473

    [16]

    Zhao Y Q, Liu B, Yu Z L, Ma J M, Wan Q, He P B, Cai M Q 2017 J. Mater. Chem. C 5 5356

    [17]

    Zhao Y Q, Wu L J, Liu B, Wang L Z, He P B, Cai M Q 2016 J. Power Sources 313 96

    [18]

    Wu L J, Zhao Y Q, Chen C W, Wang L Z, Liu B, Cai M Q 2016 Chin. Phys. B 25 107202

    [19]

    Wang L Z, Zhao Y Q, Liu B, Wu L J, Cai M Q 2016 Phys. Chem. Chem. Phys. 18 22188

    [20]

    Li J C, Wang C L, Wang M X, Peng H, Zhang R Z, Zhao M L, Liu J, Zhang J L, Mei L M 2009 J. Appl. Phys. 105 043503

    [21]

    Zhu T J, Xiao K, Yu C, Shen J J, Yang S H, Zhou A J, Zhao X B, He J 2010 J. Appl. Phys. 108 044903

    [22]

    Peng J Y, Liu X Y, Fu L W, Xu W, Liu Q Z, Yang J Y 2012 J. Alloys Compd. 521 141

  • [1] 李强, 陈硕, 刘可可, 鲁志强, 胡芹, 冯利萍, 张清杰, 吴劲松, 苏贤礼, 唐新峰. n型Bi2Te3基化合物的类施主效应和热电性能.  , 2023, 72(9): 097101. doi: 10.7498/aps.72.20230231
    [2] 刘榕涛, 王晨阳, 黄嘉勉, 罗鹏飞, 刘欣, 叶松, 董子睿, 张继业, 骆军. Sc掺杂Ti1–xNiSb半哈斯勒合金的制备与热电性能.  , 2023, 72(8): 087201. doi: 10.7498/aps.72.20230035
    [3] 訾鹏, 白辉, 汪聪, 武煜天, 任培安, 陶奇睿, 吴劲松, 苏贤礼, 唐新峰. AgyIn3.33–y/3Se5化合物结构和热电性能.  , 2022, 71(11): 117101. doi: 10.7498/aps.71.20220179
    [4] 陈上峰, 孙乃坤, 张宪民, 王凯, 李武, 韩艳, 吴丽君, 岱钦. Mn3As2掺杂Cd3As2纳米结构的制备及热电性能.  , 2022, 71(18): 187201. doi: 10.7498/aps.71.20220584
    [5] 王莫凡, 应鹏展, 李勰, 崔教林. 多组元掺杂提升Cu3SbSe4基固溶体的热电性能.  , 2021, 70(10): 107303. doi: 10.7498/aps.70.20202094
    [6] 邹平, 吕丹, 徐桂英. 高压烧结制备Tb掺杂n型(Bi1–xTbx)2(Te0.9Se0.1)3合金及其微结构和热电性能.  , 2020, 69(5): 057201. doi: 10.7498/aps.69.20191561
    [7] 袁国才, 陈曦, 黄雨阳, 毛俊西, 禹劲秋, 雷晓波, 张勤勇. Mg2Si0.3Sn0.7掺杂Ag和Li的热电性能对比.  , 2019, 68(11): 117201. doi: 10.7498/aps.68.20190247
    [8] 宋庆功, 赵俊普, 顾威风, 甄丹丹, 郭艳蕊, 李泽朋. 基于密度泛函理论的La掺杂-TiAl体系结构延性与电子性质.  , 2017, 66(6): 066103. doi: 10.7498/aps.66.066103
    [9] 陈萝娜, 刘叶烽, 张继业, 杨炯, 邢娟娟, 骆军, 张文清. Ga掺杂对Cu3SbSe4热电性能的影响.  , 2017, 66(16): 167201. doi: 10.7498/aps.66.167201
    [10] 宋庆功, 秦国顺, 杨宝宝, 蒋清杰, 胡雪兰. 杂质浓度对Zr替位掺杂-TiAl合金的结构延性和电子性质的影响.  , 2016, 65(4): 046102. doi: 10.7498/aps.65.046102
    [11] 孙政, 陈少平, 杨江锋, 孟庆森, 崔教林. 非等电子Sb替换Cu和Te后黄铜矿结构半导体Cu3Ga5Te9的热电性能.  , 2014, 63(5): 057201. doi: 10.7498/aps.63.057201
    [12] 余波. Ag掺杂对p型Pb0.5Sn0.5Te化合物热电性能的影响规律.  , 2012, 61(21): 217104. doi: 10.7498/aps.61.217104
    [13] 张贺, 骆军, 朱航天, 刘泉林, 梁敬魁, 饶光辉. Cu掺杂AgSbTe2化合物的相稳定、晶体结构及热电性能.  , 2012, 61(8): 086101. doi: 10.7498/aps.61.086101
    [14] 孙毅, 王春雷, 王洪超, 苏文斌, 刘剑, 彭华, 梅良模. 烧结温度对La0.1Sr0.9TiO3陶瓷热电性能的影响.  , 2012, 61(16): 167201. doi: 10.7498/aps.61.167201
    [15] 周丽梅, 李炜, 蒋俊, 陈建敏, 李勇, 许高杰. β-Zn4Sb3/Zn1-δAlδO复合材料的制备及热电性能研究.  , 2011, 60(6): 067201. doi: 10.7498/aps.60.067201
    [16] 张飞鹏, 张忻, 路清梅, 刘燕琴, 张久兴. Ca位置换Fe的氧化物Ca1-xFexMnO3(x=00.12)的制备及电输运性能.  , 2011, 60(8): 087205. doi: 10.7498/aps.60.087205
    [17] 王洪超, 王春雷, 苏文斌, 刘剑, 赵越, 彭华, 张家良, 赵明磊, 李吉超, 尹娜, 梅良模. 烧结温度对La0.9Sr0.1FeO3热电性能的影响.  , 2010, 59(5): 3455-3460. doi: 10.7498/aps.59.3455
    [18] 张佳佳, 曹世勋, 袁淑娟, 李哲, 康保娟, 张金仓. Sr掺杂Eu1-xSrxMnO3体系的磁相变以及输运特性研究.  , 2010, 59(9): 6494-6500. doi: 10.7498/aps.59.6494
    [19] 毛华平, 王红艳, 朱正和, 唐永建. AunY(n=1—9)掺杂团簇的结构和电子性质研究.  , 2006, 55(9): 4542-4547. doi: 10.7498/aps.55.4542
    [20] 蒋 俊, 许高杰, 崔 平, 陈立东. TeI4掺杂量对n型Bi2Te3基烧结材料热电性能的影响.  , 2006, 55(9): 4849-4853. doi: 10.7498/aps.55.4849
计量
  • 文章访问数:  6202
  • PDF下载量:  222
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-03
  • 修回日期:  2017-08-23
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map