搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

p型多晶硅薄膜应变因子与掺杂浓度关系理论研究

王健 揣荣岩

引用本文:
Citation:

p型多晶硅薄膜应变因子与掺杂浓度关系理论研究

王健, 揣荣岩

Theoretical relationship between p-type polysilicon thin film gauge factor and doping concentration

Wang Jian, Chuai Rong-Yan
PDF
导出引用
  • 多晶硅薄膜具有良好的压阻特性,晶粒结构和掺杂浓度决定其压阻特性.一般通过调节掺杂浓度改变压阻参数,但现有的多晶硅薄膜压阻系数与掺杂浓度的理论关系和适用范围不够全面.为了完善多晶硅薄膜压阻理论,基于多晶硅纳米薄膜隧道压阻模型,以及硅价带和空穴电导质量随应力改变的机理,提出了一种p型多晶硅薄膜压阻系数算法.该算法分别求取了晶粒中性区和复合晶界区的压阻系数π11,π12和π44的理论公式,据此可以计算任意择优晶向排列多晶硅的纵向和横向压阻系数.根据材料的结构特性,求取了p型多晶硅纳米薄膜和普通多晶硅薄膜应变因子,绘制了应变因子与掺杂浓度的关系曲线,与测试结果比较,具有较好的一致性.因此,该算法全面和准确,对多晶硅薄膜的压阻特性的改进和应用具有重要意义.
    The polysilicon thin film piezoresistors are widely used in semiconductor pressure sensors. The polysilicon thin film has good piezoresistance properties, which are determined by the grain structure and doping concentration. The gauge factor of the polysilicon thin film is usually modified according to the relationship between gauge factor and doping concentration. The polysilicon thin films are classified into common polysilicon thin films and polysilicon nanofilms according to their thickness. The common polysilicon thin film thickness is more than 0.3 μm, which has good temperature characteristic, but its piezoresistance coefficient is small. However, the polysilicon nanofilm thickness is less than 0.1 μm, which has good temperature characteristic and high piezoresistance coefficient. The existing piezoresistance theory of the common polysilicon thin film cannot explain reasonably the experimental result of polysilicon nanofilm piezoresistance. Therefore, the tunneling piezoresistance model and an algorithm for the p-type polysilicon nanofilm piezoresistance coefficient were established in 2006. However, this algorithm presents an incomplete fundamental piezoresistance coefficient. In order to improve the polysilicon thin film piezoresistance theory, based on the tunneling piezoresistance model and the mechanism of silicon and the valence band hole conductivity mass with the change of stress, a novel algorithm for the piezoresistance coefficient of the p-type polysilicon thin film is presented. The theoretical formulas for three fundamental piezoresistance coefficients π11, π12 and π44 of the grain neutral and grain boundary regions, are presented respectively. With these formulas for the coefficients, the longitudinal and transverse piezoresistance coefficients for arbitrary crystal direction texture polysilicon can be obtained. According to the structure characteristics, the gauge factors of the p-type polysilicon nanofilm and the common polysilicon thin film are calculated, and then the longitudinal and transverse gauge factors are plotted each as a function of doping concentration, which are compared with the experimental results. According to the experimental results of the polysilicon nanofilm, the grain size is L=30 nm, the grain crystal directions are randomly distributed. The trap density in grain boundary region is Nt=1013 cm-2, the Young's modulus of elastic diaphragm is Y=1.69×1011 Pa, the Poisson ratio of elastic diaphragm is ν=0.062, the grain boundary width is δ=1 nm, and the thickness is 80 nm. The comparison indicates that the gauge factor average error between calculation and experiment is 0.5 times less than the average experimental difference between the maximum and the minimum for each doping concentration. For the common polysilicon thin film, according to the experimental results, its grain size L is 135 nm, thickness is 400 nm, the orientations of crystal grain neutral region are[311],[111] and[110] in the ratio of 49:31:20, i.e., 〈311〉:〈111〉:〈110〉=49:31:20, and the gauge factor calculated result is also good agreement with the experimental result. Therefore, the proposed algorithm is comprehensive and accurate, which is applicable to the p-type common polysilicon film and the polysilicon nanofilm.
      通信作者: 王健, wj100_108@126.com
    • 基金项目: 辽宁省自然科学基金指导计划(批准号:20170540718)资助的课题.
      Corresponding author: Wang Jian, wj100_108@126.com
    • Funds: Project supported by the Natural Science Foundation of Liaoning Province, China (Grant No. 20170540718).
    [1]

    Niu D F, Wen W P, Ma L Z 1994 Inst. Tech. Sens. 6 13 (in Chinese) [牛德芳, 闫卫平, 马灵芝 1994 仪表技术与传感器 6 13]

    [2]

    Zhang W X, Mao G R, Yao S Y, Qu H W 1996 J. Tianjin Univ. 29 466 (in Chinese) [张维新, 毛赣如, 姚素英, 曲宏伟 1996 天津大学学报 29 466]

    [3]

    Mao G R, Yao S Y, Qu H W, Li Y S 1997 J. Tianjin Univ. 30 767 (in Chinese) [毛赣如, 姚素英, 曲宏伟, 李永生 1997 天津大学学报 30 767]

    [4]

    Zao X F, Wen D Z 2008 Chin. J. Semicond. 29 45 (in Chinese) [赵晓锋, 温殿忠 2008 半导体学报 29 45]

    [5]

    Zhang D Z, Hu G Q, Chen C W 2009 Inst. Tech. Sens. 11 55 (in Chinese) [张冬至, 胡国清, 陈昌伟 2009 仪表技术与传感器 11 55]

    [6]

    Wang J, Chuai R Y, Yang L J, Dai Q 2015 Sens. Actuators A: Phys. 228 75

    [7]

    Chuai R Y, Wang J, Yi C, Dai Q, Yang L J 2015 IEEE Sens. J. 15 1414

    [8]

    Wu Z Z, Ahn C H 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung Taiwan, China, June 18-22, 2017 p256

    [9]

    Smith C S 1954 Phys. Rev. 94 42

    [10]

    Erskine J C 1983 IEEE Trans. Magn. 30 796

    [11]

    French P J, Evens A G R 1984 Electron. Lett. 20 999

    [12]

    Schubert D, Jenschke W, Uhlig T, Schmidt F M 1987 Sens. Actuators A: Phys. 11 145

    [13]

    Gridchin V A, Lubimsky V M, Sarina M P 1995 Sens. Actuators A: Phys. 49 67

    [14]

    French P J, Evens A G R 1985 Sens. Actuators A: Phys. 8 219

    [15]

    Chuai R Y 2007 Ph. D. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [揣荣岩 2007 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [16]

    Suzuki K, Hasegawa H, Kanda Y 1984 Jpn. J. Appl. Phys. 23 L871

    [17]

    Kleimann P, Semmache B, Le Berre M, Barbier D 1998 Phys. Rev. B 57 8966

    [18]

    Chuai R Y, Wang J, Wu M L, Liu X W, Jin X S, Yang L J 2012 Chin. J. Semicond. 33 092003 (in Chinese) [揣荣岩, 王健, 吴美乐, 刘晓为, 靳晓诗, 杨理践 2012 半导体学报 33 092003]

    [19]

    Chuai R Y, Liu X W, Huo M X, Song M H, Wang X L, Pan H Y 2006 Chin. J. Semicond. 27 1230 (in Chinese) [揣荣岩, 刘晓为, 霍明学, 宋明浩, 王喜莲, 潘慧艳 2006 半导体学报 27 1230]

    [20]

    Chuai R Y, Liu B, Liu X W 2010 Chin. J. Semicond. 31 032002 (in Chinese) [揣荣岩, 刘斌, 刘晓为 2010 半导体学报 31 032002]

    [21]

    Pikus G E, Bir G L 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: John Wiley & Son, Inc.) pp110-150

    [22]

    Ma J L, Zhang H M, Song J J, Wang G Y, Wang X Y 2011 Acta Phys. Sin. 60 027101 (in Chinese) [马建立, 张鹤鸣, 宋建军, 王冠宇, 王晓艳 2011 60 027101]

    [23]

    Toriyama T, Sugiyama S 2002 J. Microelectromech. S. 11 598

    [24]

    Hong Y P, Liang T, Ge B E, Wang W, Zheng T L, Li S N, Xiong J J 2014 Chin. J. Semicond. 35 054009 (in Chinese) [洪应平, 梁庭, 葛冰儿, 王伟, 郑庭丽, 李赛男, 熊继军 2014 半导体学报 35 054009]

    [25]

    Li S N, Liang T, Wang W, Hong Y P, Zheng T L, Xiong J J 2015 Chin. J. Semicond. 36 014014 (in Chinese) [李赛男, 梁庭, 王伟, 洪应平, 郑庭丽, 熊继军 2015 半导体学报 36 014014]

    [26]

    Warner R M, Grung B L (translated by L C Z, Feng S W, Zhang W R) 2005 Semiconductor-Device Electronics (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [沃纳R M, 格兰B L 著 (吕长志, 冯士维, 张万荣 译) 2005 半导体器件电子学 (北京: 电子工业出版社) 第141页]

    [27]

    Shun Y C, Liu Y L, Meng Q H 2000 Design and Manufacture of Pressure Sensor and its Application (Beijing: Metallurgical Industry Press) p62 (in Chinese) [孙以材, 刘玉岭, 孟庆浩 2000压力传感器的设计制造与应用(北京: 冶金工业出版社)第62页]

    [28]

    French P J, Evans A G R 1989 Solid-State Electron. 32 1

  • [1]

    Niu D F, Wen W P, Ma L Z 1994 Inst. Tech. Sens. 6 13 (in Chinese) [牛德芳, 闫卫平, 马灵芝 1994 仪表技术与传感器 6 13]

    [2]

    Zhang W X, Mao G R, Yao S Y, Qu H W 1996 J. Tianjin Univ. 29 466 (in Chinese) [张维新, 毛赣如, 姚素英, 曲宏伟 1996 天津大学学报 29 466]

    [3]

    Mao G R, Yao S Y, Qu H W, Li Y S 1997 J. Tianjin Univ. 30 767 (in Chinese) [毛赣如, 姚素英, 曲宏伟, 李永生 1997 天津大学学报 30 767]

    [4]

    Zao X F, Wen D Z 2008 Chin. J. Semicond. 29 45 (in Chinese) [赵晓锋, 温殿忠 2008 半导体学报 29 45]

    [5]

    Zhang D Z, Hu G Q, Chen C W 2009 Inst. Tech. Sens. 11 55 (in Chinese) [张冬至, 胡国清, 陈昌伟 2009 仪表技术与传感器 11 55]

    [6]

    Wang J, Chuai R Y, Yang L J, Dai Q 2015 Sens. Actuators A: Phys. 228 75

    [7]

    Chuai R Y, Wang J, Yi C, Dai Q, Yang L J 2015 IEEE Sens. J. 15 1414

    [8]

    Wu Z Z, Ahn C H 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) Kaohsiung Taiwan, China, June 18-22, 2017 p256

    [9]

    Smith C S 1954 Phys. Rev. 94 42

    [10]

    Erskine J C 1983 IEEE Trans. Magn. 30 796

    [11]

    French P J, Evens A G R 1984 Electron. Lett. 20 999

    [12]

    Schubert D, Jenschke W, Uhlig T, Schmidt F M 1987 Sens. Actuators A: Phys. 11 145

    [13]

    Gridchin V A, Lubimsky V M, Sarina M P 1995 Sens. Actuators A: Phys. 49 67

    [14]

    French P J, Evens A G R 1985 Sens. Actuators A: Phys. 8 219

    [15]

    Chuai R Y 2007 Ph. D. Dissertation (Harbin: Harbin Institute Technology) (in Chinese) [揣荣岩 2007 博士学位论文(哈尔滨: 哈尔滨工业大学)]

    [16]

    Suzuki K, Hasegawa H, Kanda Y 1984 Jpn. J. Appl. Phys. 23 L871

    [17]

    Kleimann P, Semmache B, Le Berre M, Barbier D 1998 Phys. Rev. B 57 8966

    [18]

    Chuai R Y, Wang J, Wu M L, Liu X W, Jin X S, Yang L J 2012 Chin. J. Semicond. 33 092003 (in Chinese) [揣荣岩, 王健, 吴美乐, 刘晓为, 靳晓诗, 杨理践 2012 半导体学报 33 092003]

    [19]

    Chuai R Y, Liu X W, Huo M X, Song M H, Wang X L, Pan H Y 2006 Chin. J. Semicond. 27 1230 (in Chinese) [揣荣岩, 刘晓为, 霍明学, 宋明浩, 王喜莲, 潘慧艳 2006 半导体学报 27 1230]

    [20]

    Chuai R Y, Liu B, Liu X W 2010 Chin. J. Semicond. 31 032002 (in Chinese) [揣荣岩, 刘斌, 刘晓为 2010 半导体学报 31 032002]

    [21]

    Pikus G E, Bir G L 1974 Symmetry and Strain-Induced Effects in Semiconductors (New York: John Wiley & Son, Inc.) pp110-150

    [22]

    Ma J L, Zhang H M, Song J J, Wang G Y, Wang X Y 2011 Acta Phys. Sin. 60 027101 (in Chinese) [马建立, 张鹤鸣, 宋建军, 王冠宇, 王晓艳 2011 60 027101]

    [23]

    Toriyama T, Sugiyama S 2002 J. Microelectromech. S. 11 598

    [24]

    Hong Y P, Liang T, Ge B E, Wang W, Zheng T L, Li S N, Xiong J J 2014 Chin. J. Semicond. 35 054009 (in Chinese) [洪应平, 梁庭, 葛冰儿, 王伟, 郑庭丽, 李赛男, 熊继军 2014 半导体学报 35 054009]

    [25]

    Li S N, Liang T, Wang W, Hong Y P, Zheng T L, Xiong J J 2015 Chin. J. Semicond. 36 014014 (in Chinese) [李赛男, 梁庭, 王伟, 洪应平, 郑庭丽, 熊继军 2015 半导体学报 36 014014]

    [26]

    Warner R M, Grung B L (translated by L C Z, Feng S W, Zhang W R) 2005 Semiconductor-Device Electronics (Beijing: Publishing House of Electronics Industry) p141 (in Chinese) [沃纳R M, 格兰B L 著 (吕长志, 冯士维, 张万荣 译) 2005 半导体器件电子学 (北京: 电子工业出版社) 第141页]

    [27]

    Shun Y C, Liu Y L, Meng Q H 2000 Design and Manufacture of Pressure Sensor and its Application (Beijing: Metallurgical Industry Press) p62 (in Chinese) [孙以材, 刘玉岭, 孟庆浩 2000压力传感器的设计制造与应用(北京: 冶金工业出版社)第62页]

    [28]

    French P J, Evans A G R 1989 Solid-State Electron. 32 1

  • [1] 王艺琳, 兰自轩, 杜汇伟, 赵磊, 马忠权. 重掺杂多晶硅薄膜中磷氧化物的探究.  , 2022, 71(18): 188201. doi: 10.7498/aps.71.20220706
    [2] 贾河顺, 罗磊, 李秉霖, 徐振华, 任现坤, 姜言森, 程亮, 张春艳. 彩色多晶硅太阳电池性能研究.  , 2013, 62(16): 168802. doi: 10.7498/aps.62.168802
    [3] 王永田, 刘宗德, 易军, 薛志勇. 多壁碳纳米管薄膜的压阻效应研究.  , 2012, 61(5): 057302. doi: 10.7498/aps.61.057302
    [4] 康昆勇, 邓书康, 申兰先, 孙启利, 郝瑞亭, 化麒麟, 唐润生, 杨培志, 李明. 退火对Ge诱导晶化多晶Si薄膜结晶特性的影响.  , 2012, 61(19): 198101. doi: 10.7498/aps.61.198101
    [5] 苏元军, 徐军, 朱明, 范鹏辉, 董闯. 利用等离子体辅助脉冲磁控溅射实现多晶硅薄膜的低温沉积.  , 2012, 61(2): 028104. doi: 10.7498/aps.61.028104
    [6] 陈应天, 何祚庥. 强辐射催化法提纯多晶硅.  , 2011, 60(7): 078104. doi: 10.7498/aps.60.078104
    [7] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断.  , 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [8] 唐正霞, 沈鸿烈, 江丰, 方茹, 鲁林峰, 黄海宾, 蔡红. 变温退火制备铝诱导大晶粒多晶硅薄膜的机理研究.  , 2010, 59(12): 8770-8775. doi: 10.7498/aps.59.8770
    [9] 刘召军, 孟志国, 赵淑云, 郭海成, 吴春亚, 熊绍珍. 用镍硅氧化物源横向诱导晶化的多晶硅薄膜.  , 2010, 59(4): 2775-2782. doi: 10.7498/aps.59.2775
    [10] 罗翀, 孟志国, 王烁, 熊绍珍. 溶液法铝诱导晶化制备多晶硅薄膜.  , 2009, 58(9): 6560-6565. doi: 10.7498/aps.58.6560
    [11] 祁 菁, 金 晶, 胡海龙, 高平奇, 袁保和, 贺德衍. H2对Ar稀释SiH4等离子体CVD制备多晶硅薄膜的影响.  , 2006, 55(11): 5959-5963. doi: 10.7498/aps.55.5959
    [12] 赵淑云, 吴春亚, 李 娟, 刘建平, 张晓丹, 张丽珠, 孟志国, 熊绍珍. 化学源金属诱导多晶硅研究.  , 2006, 55(2): 825-829. doi: 10.7498/aps.55.825
    [13] 黄 锐, 林璇英, 余云鹏, 林揆训, 祝祖送, 魏俊红. 氢稀释对多晶硅薄膜结构特性和光学特性的影响.  , 2006, 55(5): 2523-2528. doi: 10.7498/aps.55.2523
    [14] 祝祖送, 林璇英, 余云鹏, 林揆训, 邱桂明, 黄 锐, 余楚迎. 用SiCl4/H2气源沉积多晶硅薄膜光照稳定性的研究.  , 2005, 54(8): 3805-3809. doi: 10.7498/aps.54.3805
    [15] 林璇英, 黄创君, 林揆训, 余运鹏, 余楚迎, 黄 锐. 用SiCl4-H2低温沉积多晶硅薄膜微结构的Raman分析.  , 2004, 53(5): 1558-1561. doi: 10.7498/aps.53.1558
    [16] 陈一匡, 林揆训, 罗 志, 梁锐生, 周甫方. 铝诱导非晶硅薄膜的场致低温快速晶化及其结构表征.  , 2004, 53(2): 582-586. doi: 10.7498/aps.53.582
    [17] 黄 锐, 林璇英, 余云鹏, 林揆训, 姚若河, 黄文勇, 魏俊红, 王照奎, 余楚迎. 多晶硅薄膜低温生长中晶粒大小的控制.  , 2004, 53(11): 3950-3955. doi: 10.7498/aps.53.3950
    [18] 汪六九, 朱美芳, 刘丰珍, 刘金龙, 韩一琴. 热丝化学气相沉积技术低温制备多晶硅薄膜的结构与光电特性.  , 2003, 52(11): 2934-2938. doi: 10.7498/aps.52.2934
    [19] 贺德衍. 多晶硅薄膜低温生长中的表面反应控制.  , 2001, 50(4): 779-783. doi: 10.7498/aps.50.779
    [20] 郭述文, 谭淞生, 王渭源. PECVD硼掺杂微晶硅薄膜的压阻特性.  , 1988, 37(11): 1794-1799. doi: 10.7498/aps.37.1794
计量
  • 文章访问数:  6482
  • PDF下载量:  211
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-07
  • 修回日期:  2017-09-01
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map