搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

半无限深势阱中自旋相关玻色-爱因斯坦凝聚体的量子反射与干涉

赵文静 文灵华

引用本文:
Citation:

半无限深势阱中自旋相关玻色-爱因斯坦凝聚体的量子反射与干涉

赵文静, 文灵华

Quantum reflection and interference of spin-dependent Bose-Einstein condensates in semi-infinite potential wells

Zhao Wen-Jing, Wen Ling-Hua
PDF
导出引用
  • 玻色-爱因斯坦凝聚体与势垒或势阱的量子反射及干涉是考察宏观物质波奇特物性的最有效途径之一.利用传播子方法和基于冷原子实验广泛采用的飞行时间吸收成像方案,研究自旋相关玻色-爱因斯坦凝聚体在半无限深势阱中的反射和干涉演化动力学,得到了自旋相关的凝聚体波函数的严格解析解.结果表明,当自旋相关光晶格关闭后,非局域于不同格点中相同自旋态的物质波在自由膨胀过程中发生量子干涉,形成了对比度明显的干涉条纹.与此同时,扩张的自旋相关物质波包与半无限深势阱壁相遇发生量子反射,反射波与入射波产生二重干涉,在密度分布两边对称的局部位置出现剧烈的振荡,干涉条纹表现出显著的调制效应.分析讨论了自旋态、相干输运距离和相对相位等因素对干涉条纹的影响.该研究有助于促进对自旋相关凝聚体宏观量子特性的认识,为深入检验自旋相关光晶格中凝聚体干涉的理论模型和物理机理提供依据和新方案.
    The quantum reflection and interference of Bose-Einstein condensates (BECs) encountering a potential barrier or well is one of the most efficient ways of studying the exotic properties of macroscopic matter waves. As a matter of fact, one can reveal the quantum nature, coherence properties, and many-body effects as well as the potential applications of ultracold atomic gases by virtue of the quantum reflection and interference of BECs. Although there have been extensive investigations regarding the quantum reflection and interference of single-component BECs, so far there have been very few studies regarding those of multi-component BECs. In this work, we investigate the quantum reflections and interferences of spin-dependent BECs in semi-infinite potential wells by using the propagation method and the time-of-flight imaging scheme which is widely used in cold atom experiments. We obtain the exact analytical solutions of the spin-dependent condensate wave functions in the semi-infinite potential wells. It is shown that once the spin-dependent optical lattice is switched off the spin-dependent matter wave packets delocalized in different lattice sites interfere with each other during the free expansion. Consequently, the interference fringes with high contrast are formed. At the same time, the expanded spin-dependent matter waves encounter the hard wall of the semi-infinite potential well, which leads to a quantum reflection. There is a double interference between the reflected wave and the freely expanded incident wave, which is characterized by the significant modulation effect in the interference patterns. Concretely, there exist intense density oscillations in several symmetric and local regions of the interference fringes. Essentially, the double interference is a self-interference of BECs, and it results from the interference between the spin-dependent BEC and the BEC image, where the hard wall severs as a mirror plane. Therefore it is similar to Young's double-slit interference in wave optics, and a standing wave node is formed at the trap wall. In particular, the positions and the intervals of the local density oscillations in the interference patterns are determined by evolution time, laser wavelength and laser intensity, which is verified in the numerical simulations and calculations. In addition, the effects of spin state, transport distance, and relative phase on the interference fringes are analyzed and discussed. The present investigation is helpful in understanding the macroscopic quantum properties of the spin-dependent BECs, and provides a new scheme to test the theoretical model and physical mechanism of the condensate interference in a spin-dependent optical lattice.
      通信作者: 文灵华, linghuawen@ysu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11475144)、河北省自然科学基金(批准号:A2015203037)和燕山大学人才引进科研启动基金(批准号:B846)资助的课题.
      Corresponding author: Wen Ling-Hua, linghuawen@ysu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11475144), the Natural Science Foundation of Hebei Province of China (Grant No. A2015203037), and the Research Foundation for Advanced Talents of Yanshan University, China (Grant No. B846).
    [1]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [2]

    Pasquini T A, Shin Y, Sanner C, Saba M, Schirotzek A, Pritchard D E, Ketterle W 2004 Phys. Rev. Lett. 93 223201

    [3]

    Pasquini T A, Saba M, Jo G, Shin Y, Ketterle W, Pritchard D E, Savas T A, Mulders N 2006 Phys. Rev. Lett. 97 093201

    [4]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [5]

    Hofferberth S, Lesanovsky I, Schumm T, Imambekov A, Gritsev V, Demler E, Schmiedmayer J 2008 Nat. Phys. 4 489

    [6]

    Fang B, Johnson A, Roscilde T, Bouchoule I 2016 Phys. Rev. Lett. 116 050402

    [7]

    Chang R, Bouton Q, Cayla H, Qu C, Aspect A, Westbrook C I, Clement D 2016 Phys. Rev. Lett. 117 235303

    [8]

    Castellanos E, Rivas J I 2015 Phys. Rev. D 91 084019

    [9]

    Wen L H, Wang J S, Feng J, Hu H Q 2008 J. Phys. B 41 135301

    [10]

    Scott R G, Martin A M, Fromhold T M, Sheard F W 2005 Phys. Rev. Lett. 95 073201

    [11]

    Marchant A L, Billam T P, Yu M M H, Rakonjac A, Helm J L, Polo J, Weiss C, Gardiner S A, Cornish S L 2016 Phys. Rev. A 93 021604

    [12]

    Berrada T, van Frank S, Bucker R, Schumm T, Schaff J F, Schmiedmayer J, Julia-Diaz B, Polls A 2016 Phys. Rev. A 93 063620

    [13]

    Fouda M F, Fang R, Ketterson J B, Shahriar M S 2016 Phys. Rev. A 94 063644

    [14]

    Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, Bloch I 2003 Phys. Rev. Lett. 91 010407

    [15]

    Castin Y, Dalibard J 1997 Phys. Rev. A 55 4330

    [16]

    Yang X X, Wu Y 1999 Phys. Lett. A 253 219

    [17]

    Liu W M, Wu B, Niu Q 2000 Phys. Rev. Lett. 84 2294

    [18]

    Xiong H, Liu S, Huang G, Xu Z 2002 J. Phys. B 35 4863

    [19]

    Liu S, Xiong H, Xu Z, Huang G 2003 J. Phys. B 36 2083

    [20]

    Xiong H, Liu S, Zhan M 2006 New J. Phys. 8 245

    [21]

    Bach R, Rzazewski K 2004 Phys. Rev. Lett. 92 200401

    [22]

    Liu S, Xiong H 2007 New J. Phys. 9 412

    [23]

    Hadzibabic Z, Stock S, Battelier B, Bretin V, Dalibard J 2004 Phys. Rev. Lett. 93 180403

    [24]

    Ashhab S 2005 Phys. Rev. A 71 063602

    [25]

    Wen L H, Liu M, Xiong H W, Zhan M S 2005 Eur. Phys. J. D 36 89

    [26]

    Wen L H, Liu M, Kong L B, Chen A X, Zhan M S 2005 Chin. Phys. 14 690

    [27]

    Wen L H, Liu M, Kong L B, Zhan M S 2005 Chin. Phys. Lett. 22 812

    [28]

    Yue X, Liu S, Wu B, Xiong H 2017 Chin. Phys. B 26 050501

    [29]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627

    [30]

    Wen L H, Li J H 2014 Phys. Rev. A 90 053621

    [31]

    Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York:McGraw-Hill Inc.) pp26-74

    [32]

    Akhundova E A, Dodonov V V, Man'ko V I 1985 J. Phys. A 18 467

    [33]

    Pedri P, Pitaevskii L, Stringari S, Fort C, Burger S, Cataliotti F S, Maddaloni P, Minardi F, Inguscio M 2001 Phys. Rev. Lett. 87 220401

    [34]

    Robinett W 2006 Phys. Scr. 73 681

  • [1]

    Andrews M R, Townsend C G, Miesner H J, Durfee D S, Kurn D M, Ketterle W 1997 Science 275 637

    [2]

    Pasquini T A, Shin Y, Sanner C, Saba M, Schirotzek A, Pritchard D E, Ketterle W 2004 Phys. Rev. Lett. 93 223201

    [3]

    Pasquini T A, Saba M, Jo G, Shin Y, Ketterle W, Pritchard D E, Savas T A, Mulders N 2006 Phys. Rev. Lett. 97 093201

    [4]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39

    [5]

    Hofferberth S, Lesanovsky I, Schumm T, Imambekov A, Gritsev V, Demler E, Schmiedmayer J 2008 Nat. Phys. 4 489

    [6]

    Fang B, Johnson A, Roscilde T, Bouchoule I 2016 Phys. Rev. Lett. 116 050402

    [7]

    Chang R, Bouton Q, Cayla H, Qu C, Aspect A, Westbrook C I, Clement D 2016 Phys. Rev. Lett. 117 235303

    [8]

    Castellanos E, Rivas J I 2015 Phys. Rev. D 91 084019

    [9]

    Wen L H, Wang J S, Feng J, Hu H Q 2008 J. Phys. B 41 135301

    [10]

    Scott R G, Martin A M, Fromhold T M, Sheard F W 2005 Phys. Rev. Lett. 95 073201

    [11]

    Marchant A L, Billam T P, Yu M M H, Rakonjac A, Helm J L, Polo J, Weiss C, Gardiner S A, Cornish S L 2016 Phys. Rev. A 93 021604

    [12]

    Berrada T, van Frank S, Bucker R, Schumm T, Schaff J F, Schmiedmayer J, Julia-Diaz B, Polls A 2016 Phys. Rev. A 93 063620

    [13]

    Fouda M F, Fang R, Ketterson J B, Shahriar M S 2016 Phys. Rev. A 94 063644

    [14]

    Mandel O, Greiner M, Widera A, Rom T, Hänsch T W, Bloch I 2003 Phys. Rev. Lett. 91 010407

    [15]

    Castin Y, Dalibard J 1997 Phys. Rev. A 55 4330

    [16]

    Yang X X, Wu Y 1999 Phys. Lett. A 253 219

    [17]

    Liu W M, Wu B, Niu Q 2000 Phys. Rev. Lett. 84 2294

    [18]

    Xiong H, Liu S, Huang G, Xu Z 2002 J. Phys. B 35 4863

    [19]

    Liu S, Xiong H, Xu Z, Huang G 2003 J. Phys. B 36 2083

    [20]

    Xiong H, Liu S, Zhan M 2006 New J. Phys. 8 245

    [21]

    Bach R, Rzazewski K 2004 Phys. Rev. Lett. 92 200401

    [22]

    Liu S, Xiong H 2007 New J. Phys. 9 412

    [23]

    Hadzibabic Z, Stock S, Battelier B, Bretin V, Dalibard J 2004 Phys. Rev. Lett. 93 180403

    [24]

    Ashhab S 2005 Phys. Rev. A 71 063602

    [25]

    Wen L H, Liu M, Xiong H W, Zhan M S 2005 Eur. Phys. J. D 36 89

    [26]

    Wen L H, Liu M, Kong L B, Chen A X, Zhan M S 2005 Chin. Phys. 14 690

    [27]

    Wen L H, Liu M, Kong L B, Zhan M S 2005 Chin. Phys. Lett. 22 812

    [28]

    Yue X, Liu S, Wu B, Xiong H 2017 Chin. Phys. B 26 050501

    [29]

    Wen L H, Xiong H W, Wu B 2010 Phys. Rev. A 82 053627

    [30]

    Wen L H, Li J H 2014 Phys. Rev. A 90 053621

    [31]

    Feynman R P, Hibbs A R 1965 Quantum Mechanics and Path Integrals (New York:McGraw-Hill Inc.) pp26-74

    [32]

    Akhundova E A, Dodonov V V, Man'ko V I 1985 J. Phys. A 18 467

    [33]

    Pedri P, Pitaevskii L, Stringari S, Fort C, Burger S, Cataliotti F S, Maddaloni P, Minardi F, Inguscio M 2001 Phys. Rev. Lett. 87 220401

    [34]

    Robinett W 2006 Phys. Scr. 73 681

  • [1] 彭淑平, 邓淑玲, 刘乾, 董丞骐, 范志强. N, B原子取代调控M-OPE分子器件的量子干涉与自旋输运.  , 2024, 73(10): 108501. doi: 10.7498/aps.73.20240174
    [2] 彭淑平, 黄旭东, 刘乾, 任鹏, 伍丹, 范志强. 二噻吩硼烷异构体分子结构测定的第一性原理研究.  , 2023, 72(5): 058501. doi: 10.7498/aps.72.20221973
    [3] 戴雨菲, 陈垚彤, 王岚, 银恺, 张岩. 三模腔-原子闭环系统中可控的量子干涉和光子传输.  , 2020, 69(11): 113701. doi: 10.7498/aps.69.20200184
    [4] 贺丽, 余增强. 自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度.  , 2017, 66(22): 220301. doi: 10.7498/aps.66.220301
    [5] 张志颖, 付申成, 苟立丹, 姚治海. 三能级闭合环路系统控制的位相和幅度相关的无反转增益.  , 2013, 62(10): 104206. doi: 10.7498/aps.62.104206
    [6] 徐学翔, 张英孔, 张浩亮, 陈媛媛. N00N态的Wigner函数及N00N态作为输入的量子干涉.  , 2013, 62(11): 114204. doi: 10.7498/aps.62.114204
    [7] 王建忠, 曹辉, 豆福全. 玻色-爱因斯坦凝聚体Rosen-Zener跃迁中的多体量子涨落效应.  , 2012, 61(22): 220305. doi: 10.7498/aps.61.220305
    [8] 孙江, 孙娟, 王颖, 苏红新, 曹谨丰. 中间态引入量子干涉的三光子共振非简并六波混频.  , 2012, 61(11): 114213. doi: 10.7498/aps.61.114213
    [9] 李悦科, 张桂明, 高云峰. 非简并双光子Jaynes-Cummings模型腔场谱中的量子干涉.  , 2010, 59(3): 1786-1790. doi: 10.7498/aps.59.1786
    [10] 李悦科, 张桂明, 高云峰. Kerr效应对二项式腔场谱量子干涉的影响.  , 2010, 59(9): 6178-6184. doi: 10.7498/aps.59.6178
    [11] 刘春旭, 张继森, 刘俊业, 金光. Er3+:YAlO3晶体中Λ型四能级系统的量子相干左手性.  , 2009, 58(8): 5778-5783. doi: 10.7498/aps.58.5778
    [12] 夏庆峰, 周玉欣, 高云峰. 两模腔场谱间的量子干涉.  , 2009, 58(3): 1685-1688. doi: 10.7498/aps.58.1685
    [13] 郑 军, 刘正东, 曾福华, 方慧娟. 倒Y形四能级原子系统电磁诱导的左手效应.  , 2008, 57(7): 4219-4223. doi: 10.7498/aps.57.4219
    [14] 郑 军, 刘正东, 曾福华, 方慧娟. 真空诱导相干对电磁感应左手效应的影响.  , 2008, 57(12): 7658-7662. doi: 10.7498/aps.57.7658
    [15] 曾福华, 刘正东, 郑 军, 方慧娟. 量子调控中介质的左手效应.  , 2008, 57(4): 2218-2221. doi: 10.7498/aps.57.2218
    [16] 马瑞琼, 李永放, 时 坚. 相干瞬态的量子干涉效应和Berry相位.  , 2008, 57(7): 4083-4090. doi: 10.7498/aps.57.4083
    [17] 陈 峻, 刘正东, 郑 军, 方慧娟. 基于量子干涉效应的四能级原子系统中的vacuum-induced coherence效应.  , 2007, 56(11): 6441-6445. doi: 10.7498/aps.56.6441
    [18] 马 云, 傅立斌, 杨志安, 刘 杰. 玻色-爱因斯坦凝聚体自囚禁现象的动力学相变及其量子纠缠特性.  , 2006, 55(11): 5623-5628. doi: 10.7498/aps.55.5623
    [19] 陈 峻, 刘正东, 尤素萍. 准Λ型四能级原子系统中的烧孔和光学双稳现象.  , 2006, 55(12): 6410-6413. doi: 10.7498/aps.55.6410
    [20] 孙 江, 左战春, 米 辛, 俞祖和, 吴令安, 傅盘铭. 引入量子干涉的双光子共振非简并四波混频.  , 2005, 54(1): 149-154. doi: 10.7498/aps.54.149
计量
  • 文章访问数:  5835
  • PDF下载量:  261
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-14
  • 修回日期:  2017-07-05
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map