-
The cavity field spectra of two modes field both in the binomial state interacting with a two-level atom in an ideal cavity is investigated. The results for the weak initial fields are calculated. The influence of the quantum interference on the cavity field spectra is discussed. It’s shown that the quantum interference term performs periodical damped oscillation with the changing of the difference of the two field frequencies. The periodicity is about 016 g(g is the coupling coefficient between the atom and the fields). When the difference of the two field frequencies is larger than 16 g, the quantum interference term can be ignored. Otherwise, the quantum interference term is related to photon number of initial field. The quantum interference term strengthens gradually with the photon number increasing, but weakens abruptly when the maximal photon number becomes greater than 4 The quantum interference phenomenon almost vanishes when the photon number is greater than 6.
-
Keywords:
- cavity field spectrum /
- quantum interference /
- binomial state field
[1] [1]Stoler D, Saleh B E A, Teich M C 1985 J. Mod. Opt. 32 345
[2] [2]Dattoli G, Galardo J, Torre A 1987 J. Opt. Soc. Am. B 4 185
[3] [3]Fan H Y, Jing S C 1994 Phys. Rev. A 50 1909
[4] [4]Song J, Cao Z L 2005 Acta Phys. Sin. 54 696(in Chinese)[宋军、曹卓良 2005 54 696]
[5] [5]Zhao J G , Sun C Y ,Wen L H, Liang B L 2009 Chin. Phys. B 18 2294
[6] [6]Hu Y H, Fang M F, Liao X P, Zheng X J 2006 Acta Phys. Sin. 55 4631(in Chinese)[胡要花、方卯发、廖湘萍、郑小娟 2006 55 4631]
[7] [7]Xia Q F, Zhou Y X, GaoY F 2009 Acta Phys. Sin. 58 1685(in Chinese)[夏庆峰、周玉欣、 高云峰 2000 58 1685]
[8] [8]Tahira Nasreen, Razmi M S K 1993 J . Opt . Soc. Am. B 10 1292
[9] [9]Ashraf M M 1994 Phys. Rev.A 50 5116
[10] ]Gao Y F, Feng J, Song T Q 1999 Acta Phys. Sin. 48 1650(in Chinese)[高云峰、冯健、宋同强 1999 48 1650]
[11] ]Gao Y F, Feng J, Shi S R 2002 Int. J. Theor. Phys. 41 867
[12] ]Li F L, Gao S Y, Zhao Y T 2003 Chin. Phys. 12 872
[13] ]Zhang G M, Li Y K, Gao Y F 2004 Acta Phys. Sin. 53 3739 (in Chinese)[张桂明、李悦科、高云峰 2004 53 3739]
[14] ]Zhou Q C, Zhu S N, Ming N B 2005 J. Phys. B: At. Mol. Opt. Phys. 38 4309
[15] ]Li Y K, Zhang G M, Gao Y F 2005 Acta Opt. Sin. 25 1131 (in Chinese))[李悦科、张桂明、高云峰 2005 光学学报 25 1131]
[16] ]Li G X, Peng J S 1993 Acta Phys. Sin. 42 1443(in Chinese)[ 李高翔、彭金生 1993 42 1443]
[17] ]Eberly J H, Wodkiewicz K 1977 J. Opt. Soc. Am. 67 1252
-
[1] [1]Stoler D, Saleh B E A, Teich M C 1985 J. Mod. Opt. 32 345
[2] [2]Dattoli G, Galardo J, Torre A 1987 J. Opt. Soc. Am. B 4 185
[3] [3]Fan H Y, Jing S C 1994 Phys. Rev. A 50 1909
[4] [4]Song J, Cao Z L 2005 Acta Phys. Sin. 54 696(in Chinese)[宋军、曹卓良 2005 54 696]
[5] [5]Zhao J G , Sun C Y ,Wen L H, Liang B L 2009 Chin. Phys. B 18 2294
[6] [6]Hu Y H, Fang M F, Liao X P, Zheng X J 2006 Acta Phys. Sin. 55 4631(in Chinese)[胡要花、方卯发、廖湘萍、郑小娟 2006 55 4631]
[7] [7]Xia Q F, Zhou Y X, GaoY F 2009 Acta Phys. Sin. 58 1685(in Chinese)[夏庆峰、周玉欣、 高云峰 2000 58 1685]
[8] [8]Tahira Nasreen, Razmi M S K 1993 J . Opt . Soc. Am. B 10 1292
[9] [9]Ashraf M M 1994 Phys. Rev.A 50 5116
[10] ]Gao Y F, Feng J, Song T Q 1999 Acta Phys. Sin. 48 1650(in Chinese)[高云峰、冯健、宋同强 1999 48 1650]
[11] ]Gao Y F, Feng J, Shi S R 2002 Int. J. Theor. Phys. 41 867
[12] ]Li F L, Gao S Y, Zhao Y T 2003 Chin. Phys. 12 872
[13] ]Zhang G M, Li Y K, Gao Y F 2004 Acta Phys. Sin. 53 3739 (in Chinese)[张桂明、李悦科、高云峰 2004 53 3739]
[14] ]Zhou Q C, Zhu S N, Ming N B 2005 J. Phys. B: At. Mol. Opt. Phys. 38 4309
[15] ]Li Y K, Zhang G M, Gao Y F 2005 Acta Opt. Sin. 25 1131 (in Chinese))[李悦科、张桂明、高云峰 2005 光学学报 25 1131]
[16] ]Li G X, Peng J S 1993 Acta Phys. Sin. 42 1443(in Chinese)[ 李高翔、彭金生 1993 42 1443]
[17] ]Eberly J H, Wodkiewicz K 1977 J. Opt. Soc. Am. 67 1252
计量
- 文章访问数: 8465
- PDF下载量: 745
- 被引次数: 0