搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维氢原子中的基态奇异特性数值精确对角化法

刘褚航 强百强 季育琛 李炜

引用本文:
Citation:

二维氢原子中的基态奇异特性数值精确对角化法

刘褚航, 强百强, 季育琛, 李炜

Numerical exact diagonalization of singularity in the ground state of two-dimensional hydrogen atom

Liu Chu-Hang, Qiang Bai-Qiang, Ji Yu-Chen, Li Wei
PDF
导出引用
  • 利用数值有限差分法处理二维氢原子的基态波函数时,计算结果发现其存在着数值奇异特性.本文通过构造一套具有正交完备性的离散贝塞尔基函数,并结合基于Lanczos技术的数值精确对角化方法研究二维氢原子中的基态波函数的数值奇异特性,得到的波函数数值解及其相应的本征能量均与解析结果相一致.这套新的完备的离散贝塞尔基函数,可以在研究一些波函数具有数值奇异特性的体系中发挥至关重要的作用.
    With the development of computing technology, numerical exact diagonalization method plays a vital role in modern computational condensed matter physics, especially in the research area of strongly correlated electron systems:it becomes a benchmark for other numerical computational techniques, such as quantum Monte Carlo, numerical renormalization group, density matrix renormalization group, and dynamic mean field theory. In this paper, we first numerically exactly diagonalize the three-dimensional hydrogen atom with the combination of finite-difference method, and find that the numerical wave function of ground state is in good agreement with the analytical calculations. We then turn to discuss the space dimension confinement hydrogen system, two-dimensional hydrogen atom, and notice that the numerical wave function is no longer in agreement with the analytical calculation, where the ground state wave function has a numerical singularity as radius approaches to zero. Compared with the case of the three-dimensional hydrogen atom, this issue mainly comes from the nature of space dimension confinement. To resolve such an issue of numerical singularity in two-dimensional hydrogen atom, we need to construct a new discrete and normalized Bessel function as a basis to study the ground state behavior of dimension confinement system based on the framework of Lanczos-type numerical exact diagonalization. The constructed normalized Bessel basis is orthogonal and discrete, and thus becomes suitable for practical calculation. Besides, these prominent properties of such a Bessel basis greatly reduce the complexity and difficulty in practical calculation, and thus makes computing work efficient. In addition, Lanczos-type numerical exact diagonalization method can extremely speed up the process of solving the eigenvalue equation. As a result, such a high efficient calculation of our method demonstrates the consistence between numerical and analytical ground state energy value, and the corresponding wave function with enough truncated basis number. Since this kind of numerical singularity occurs in many space dimension confinement systems, our finding for constructing a new discrete Bessel basis function may be helpful in studying the quantum systems with numerical singularity behaviors in wavefunctions in future. On the other hand, it should be pointed out that the Bessel basis is incorporated into the linear augment plane wave method in the density functional theory to study the electronic band structure of the condensed material and obtain high accurate results, especially in the theoretical prediction of topological insulators and in experimental realization as well.
      通信作者: 李炜, liweiphysics@gmail.com
    • 基金项目: 国家自然科学基金(批准号:11404359)和中国科学院青年创新促进会计划(批准号:2016215)资助的课题.
      Corresponding author: Li Wei, liweiphysics@gmail.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11404359) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2016215).
    [1]

    Fehske H, Schneider R, Weibe A 2008 Computational Many-Particle Physics (Berlin:Springer) p529

    [2]

    Lin H Q 1990 Phys. Rev. B 42 6561

    [3]

    Regnault N, Bernevig B A 2011 Phys. Rev. X 1 021014

    [4]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802

    [5]

    Sun K, Gu Z C, Katsura H, Sarma S D 2011 Phys. Rev. Lett. 106 236803

    [6]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804

    [7]

    Sheng D N, Gu Z C, Sun K, Sheng L 2011 Nat. Commun. 2 389

    [8]

    Li W, Liu Z, Wu Y S, Chen Y 2014 Phys. Rev. B 89 125411

    [9]

    Li W, Sheng D N, Ting C S, Chen Y 2014 Phys. Rev. B 90 081102(R)

    [10]

    Li W, Chen Y 2016 EPL 113 47001

    [11]

    Liu C R, Guo Y W, Li Z J, Li W, Chen Y 2016 Sci. Reports 6 33472

    [12]

    Dirac P A M 1982 The Principles of Quantum Mechanics (Oxford:Oxford Science Publications) p53

    [13]

    Shankar R 1994 Principles of Quantum Mechanics (New York Plenum Press) p115

    [14]

    Bardeen J, Cooper L, Schriffer J R 1957 Phys. Rev. 8 1178

    [15]

    Lanczos C 1950 J. Res. Nat. I Bur. Std. 45 255

    [16]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [17]

    Singh D 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston/Dordecht/London:Kluwer Academic Publishers) p43

    [18]

    Dresselhaus M S, Dresselhaus G, Jorio A 2008 Group Theory Application to the Physics of Condensed Matter (Springer) p57

    [19]

    Wang Z X, Guo D R 2012 Introduction to the Special Functions (Beijing:Peking University Press) p381 (in Chinese)[王竹溪, 郭敦仁 2012 特殊函数概论 (北京:北京大学出版社) 第381页]

    [20]

    Ma W T 2016 Computational Physics (Beijing:Science Press) p64 (in Chinese)[马文淦 2016 计算物理学 (北京:科学出版社) 第64页]

  • [1]

    Fehske H, Schneider R, Weibe A 2008 Computational Many-Particle Physics (Berlin:Springer) p529

    [2]

    Lin H Q 1990 Phys. Rev. B 42 6561

    [3]

    Regnault N, Bernevig B A 2011 Phys. Rev. X 1 021014

    [4]

    Tang E, Mei J W, Wen X G 2011 Phys. Rev. Lett. 106 236802

    [5]

    Sun K, Gu Z C, Katsura H, Sarma S D 2011 Phys. Rev. Lett. 106 236803

    [6]

    Neupert T, Santos L, Chamon C, Mudry C 2011 Phys. Rev. Lett. 106 236804

    [7]

    Sheng D N, Gu Z C, Sun K, Sheng L 2011 Nat. Commun. 2 389

    [8]

    Li W, Liu Z, Wu Y S, Chen Y 2014 Phys. Rev. B 89 125411

    [9]

    Li W, Sheng D N, Ting C S, Chen Y 2014 Phys. Rev. B 90 081102(R)

    [10]

    Li W, Chen Y 2016 EPL 113 47001

    [11]

    Liu C R, Guo Y W, Li Z J, Li W, Chen Y 2016 Sci. Reports 6 33472

    [12]

    Dirac P A M 1982 The Principles of Quantum Mechanics (Oxford:Oxford Science Publications) p53

    [13]

    Shankar R 1994 Principles of Quantum Mechanics (New York Plenum Press) p115

    [14]

    Bardeen J, Cooper L, Schriffer J R 1957 Phys. Rev. 8 1178

    [15]

    Lanczos C 1950 J. Res. Nat. I Bur. Std. 45 255

    [16]

    Hohenberg P, Kohn W 1964 Phys. Rev. 136 B864

    [17]

    Singh D 1994 Planewaves, Pseudopotentials and the LAPW Method (Boston/Dordecht/London:Kluwer Academic Publishers) p43

    [18]

    Dresselhaus M S, Dresselhaus G, Jorio A 2008 Group Theory Application to the Physics of Condensed Matter (Springer) p57

    [19]

    Wang Z X, Guo D R 2012 Introduction to the Special Functions (Beijing:Peking University Press) p381 (in Chinese)[王竹溪, 郭敦仁 2012 特殊函数概论 (北京:北京大学出版社) 第381页]

    [20]

    Ma W T 2016 Computational Physics (Beijing:Science Press) p64 (in Chinese)[马文淦 2016 计算物理学 (北京:科学出版社) 第64页]

  • [1] 赵婷, 宫毛毛, 张松斌. 氦原子贝塞尔涡旋光电离的理论研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241378
    [2] 陈鑫淼, 李海英, 吴涛, 孟祥帅, 黎凤霞. 金属目标对贝塞尔涡旋波束的近场电磁散射特性.  , 2023, 72(10): 100302. doi: 10.7498/aps.72.20222192
    [3] 刘雨亭, 贺文宇, 刘军伟, 邵启明. 二维材料中贝里曲率诱导的磁性响应.  , 2021, 70(12): 127303. doi: 10.7498/aps.70.20202132
    [4] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束.  , 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [5] 于涛, 夏辉, 樊志华, 谢文科, 张盼, 刘俊圣, 陈欣. 贝塞尔-高斯涡旋光束相干合成研究.  , 2018, 67(13): 134203. doi: 10.7498/aps.67.20180325
    [6] 乐阳阳, 张兴宇, 杨波, 陆蓉儿, 洪煦昊, 张超, 秦亦强, 朱永元. 一种含时贝塞尔光束的理论性质研究.  , 2016, 65(14): 144201. doi: 10.7498/aps.65.144201
    [7] 张海超, 郑丹晨, 边茂松, 韩敏. 一种基于二维光滑粒子法的流体仿真方法.  , 2016, 65(24): 244701. doi: 10.7498/aps.65.244701
    [8] 肖利, 雷天宇, 梁禺, 赵敏, 刘慧, 张斯淇, 李宏, 马季, 吴向尧. 二维函数光子晶体.  , 2016, 65(13): 134207. doi: 10.7498/aps.65.134207
    [9] 焦宝宝. 用重正交化Lanczos法求解大型非正交归一基稀疏矩阵的特征值问题.  , 2016, 65(19): 192101. doi: 10.7498/aps.65.192101
    [10] 赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升. 自加速类贝塞尔-厄米-高斯光束的理论和实验研究.  , 2014, 63(4): 044204. doi: 10.7498/aps.63.044204
    [11] 鞠在强, 王研, 鲍园, 李盼云, 朱中柱, 张凯, 黄万霞, 袁清习, 朱佩平, 吴自玉. 二维光栅角度信号响应函数研究.  , 2014, 63(7): 078701. doi: 10.7498/aps.63.078701
    [12] 谢辰, 胡明列, 徐宗伟, 兀伟, 高海峰, 张大鹏, 秦鹏, 王艺森, 王清月. 光纤激光器直接输出的高功率贝塞尔超短脉冲.  , 2013, 62(6): 064203. doi: 10.7498/aps.62.064203
    [13] 毕闯, 张千, 向勇, 王京梅. 二维正弦离散映射的分岔和吸引子.  , 2013, 62(24): 240503. doi: 10.7498/aps.62.240503
    [14] 任志君, 吴琼, 周卫东, 吴根柱, 施逸乐. 空间诱导产生艾里-贝塞尔光弹研究.  , 2012, 61(17): 174207. doi: 10.7498/aps.61.174207
    [15] 戴玉蓉, 丁德胜. 小瓣数贝塞尔声束的二次谐波.  , 2011, 60(12): 124302. doi: 10.7498/aps.60.124302
    [16] 黄春佳, 厉江帆, 贺慧勇. 二维氢原子的双波描述.  , 2000, 49(4): 615-618. doi: 10.7498/aps.49.615
    [17] 刘宇峰, 曾谨言. 二维与三维氢原子的四类升、降算子.  , 1997, 46(3): 428-434. doi: 10.7498/aps.46.428
    [18] 张海燕, 许伯威. 用共形不变性和Lanczos方法研究具有次近邻相互作用的一维量子链.  , 1994, 43(6): 864-871. doi: 10.7498/aps.43.864
    [19] 熊小明. 二维电子气的关联函数.  , 1989, 38(6): 1012-1015. doi: 10.7498/aps.38.1012
    [20] 林为干. 贝塞尔函数的近似计算在调频制中的应用.  , 1955, 11(5): 411-420. doi: 10.7498/aps.11.411
计量
  • 文章访问数:  6789
  • PDF下载量:  306
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 修回日期:  2017-08-13
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map