搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

负参数空间分数阶Chua系统的动力学行为及实验验证

胡串 李志军 陈茜茜

引用本文:
Citation:

负参数空间分数阶Chua系统的动力学行为及实验验证

胡串, 李志军, 陈茜茜

Dynamics analysis and circuit implementation of fractional-order Chua's system with negative parameters

Hu Chuan, Li Zhi-Jun, Chen Xi-Xi
PDF
导出引用
  • Chua系统展现出丰富的动力学行为,易于电路实现,因而成为混沌研究的经典范例.然而,现有针对Chua系统的研究大都局限于系统的正参数空间.基于分数阶的时域求解法,研究了分数阶Chua系统在负参数空间下的动力学行为.采用分数阶稳定性理论分析了系统平衡点的稳定性,用分岔图、最大李雅普诺夫指数研究了系统控制参数和阶次变化时系统的动力学行为.为了实验验证系统的动力学行为,采用运放、电阻、电容等模拟器件实现了负参数空间下的分数阶Chua系统,实验结果与数值仿真结果完全一致.该研究成果对进一步完善Chua系统,推动Chua系统在混沌中的应用具有参考价值.
    Because of simple schematic structure and complex dynamical behaviors, the Chua's system is considered as a paradigm for chaos research. Despite a great many of studies relating to the Chua's system, most of them focus on its positive parameter space. This is explained by the fact that the implementation of the Chua's circuit with negative parameters needs resistors, inductances and/or capacitors with negative values, and thus leads to physical impossibility. In order to extend the parameter space of the Chua's system to its negative side, where all system parameters are negative, an equivalent realization of the Chua's circuit is developed with off-the-shelf electronic components by an electronic analogy method. Recently, the research of fractional-order chaotic systems has received considerable interest. However, the theoretical and experimental studies of the fractional-order Chua's system with negative parameters are still lacking. In this study, we set up a model of the fractional-order Chua's system in negative parameter space. The stability of all equilibrium points is investigated with the fractional-order stability theory. Based on the Grnwald-Letnikov derivative, the dynamical behaviors dependent on the control parameter and the fractional orders are investigated by standard nonlinear analysis techniques including phase portraits, the largest Lyapunov exponents, and bifurcation diagrams. In order to further verify the dynamic behaviors of the fractional-order Chua's system with negative parameters, an experimental implementation of the Chua's circuit with negative parameters based on an electronic analogy is performed with off-the-shelf electronic components such as operational amplifiers, resistors and capacitors. The experimental tests are conducted on the resulting circuit. A period-doubling bifurcation route to chaos is successfully observed and some typical phase diagrams are captured by an oscilloscope, which are well consistent with theoretical analyses and numerical simulations. The numerical simulations and the experimental results show that the fractional-order Chua's system in negative parameter space can still exhibit rich dynamical behaviors. But it is worth noting that the classical double-scroll chaotic attractor emerging in a conventional Chua's system cannot be found in this system. This work focuses mainly on the dynamical behaviors of the fractional-order Chua's system with negative parameters, which was not reported previously. Thus the research results of this study will further enrich the dynamical behaviors of the Chua's system, and play a positive role in promoting the chaos-based applications of the Chua's system. Meanwhile, the results obtained in this work lead to the conjecture that there remain some unknown and striking behaviors in the Chua's system with negative parameters, which need further revealing.
      通信作者: 李志军, lizhijun@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61176032,61471310)和湖南省自然科学基金(批准号:2015JJ2142,2015JJ2140)资助的课题.
      Corresponding author: Li Zhi-Jun, lizhijun@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176032, 61471310) and the Natural Science Foundation of Hunan Province, China (Grant Nos. 2015JJ2142, 2015JJ2140).
    [1]

    He S B, Sun K H, Banerjee S 2016 Eur. Phys. J. Plus. 131 254

    [2]

    Liu X J, Hong L, Jiang J 2016 Acta Phys. Sin. 65 180502 (in Chinese)[刘晓君, 洪灵, 江俊 2016 65 180502]

    [3]

    Li C L, Zhang J 2016 Int. J. Syst. Sci. 47 2440

    [4]

    Lin F F, Zeng Z Z 2017 Acta Phys. Sin. 66 090504 (in Chinese)[林飞飞, 曾喆昭 2017 66 090504]

    [5]

    Li Z J, Zeng Y C, Li Z B 2014 Acta Phys. Sin. 63 010502 (in Chinese)[李志军, 曾以成, 李志斌 2014 63 010502]

    [6]

    Shao S Y, Min F H, Ma M L, Wang E R 2013 Acta Phys. Sin. 62 130504 (in Chinese)[邵书义, 闵富红, 马美玲, 王恩荣 2013 62 130504]

    [7]

    Xi H L, Yu S M, Zhang R X, Xu L 2014 Optik 125 2036

    [8]

    He S B, Sun K H, Wang H H 2016 Math. Meth. Appl. Sci. 39 2965

    [9]

    Bao B C, Wang N, Chen M, Xu Q, Wang J 2016 Nonlinear Dyn. 84 511

    [10]

    Li Z J, Ma M L, Wang M J, Zeng Y C 2017 Int. J. Electron. Commun. 71 21

    [11]

    Zhang X G, Sun H T, Zhao J L, Liu J Z, Ma Y D, Han T W 2014 Acta Phys. Sin. 63 200503 (in Chinese)[张新国, 孙洪涛, 赵金兰, 刘冀钊, 马义德, 韩廷武 2014 63 200503]

    [12]

    Ma M L, Min F H, Shao S Y, Huang M Y 2014 Acta Phys. Sin. 63 010507 (in Chinese)[马美玲, 闵富红, 邵书义, 黄苗玉 2014 63 010507]

    [13]

    Banerjee T 2012 Nonlinear Dyn. 68 565

    [14]

    Cafagna D, Grassi G 2008 Int. J. Bifurcation Chaos 18 615

    [15]

    Agarwal R P, El-Sayed A M A, Salman S M 2013 Adv. Differ. Equ-NY 1 320

    [16]

    Zhang H, Chen D Y, Zhou K, Wang Y C 2015 Chin. Phys. B 24 030203

    [17]

    Zhu H, Zhou S, Zhang J 2009 Chaos Solitons Fract. 39 1595

    [18]

    Li C P, Deng W H, Xu D 2006 Physica A 36 171

    [19]

    Rocha R, Medrano T R O 2009 Nonlinear Dyn. 56 389

    [20]

    Medrano T R O, Rocha R 2014 Int. J. Bifurcation Chaos 24 1430025

    [21]

    Hartly T T, Lorenzo C F, Qammer H K 1995 IEEE Trans. CAS I 42 485

    [22]

    Zhu H 2007 M. S. Dissertation (Chongqing:Chongqing University) (in Chinese)[朱浩 2007 硕士学位论文 (重庆:重庆大学)]

    [23]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504 (in Chinese)[胡建兵, 赵灵冬 2013 62 240504]

    [24]

    Sun K H, Yang J L, Ding J F, Sheng L Y 2010 Acta Phys. Sin. 59 8385 (in Chinese)[孙克辉, 杨静利, 丁家峰, 盛利元 2010 59 8385]

  • [1]

    He S B, Sun K H, Banerjee S 2016 Eur. Phys. J. Plus. 131 254

    [2]

    Liu X J, Hong L, Jiang J 2016 Acta Phys. Sin. 65 180502 (in Chinese)[刘晓君, 洪灵, 江俊 2016 65 180502]

    [3]

    Li C L, Zhang J 2016 Int. J. Syst. Sci. 47 2440

    [4]

    Lin F F, Zeng Z Z 2017 Acta Phys. Sin. 66 090504 (in Chinese)[林飞飞, 曾喆昭 2017 66 090504]

    [5]

    Li Z J, Zeng Y C, Li Z B 2014 Acta Phys. Sin. 63 010502 (in Chinese)[李志军, 曾以成, 李志斌 2014 63 010502]

    [6]

    Shao S Y, Min F H, Ma M L, Wang E R 2013 Acta Phys. Sin. 62 130504 (in Chinese)[邵书义, 闵富红, 马美玲, 王恩荣 2013 62 130504]

    [7]

    Xi H L, Yu S M, Zhang R X, Xu L 2014 Optik 125 2036

    [8]

    He S B, Sun K H, Wang H H 2016 Math. Meth. Appl. Sci. 39 2965

    [9]

    Bao B C, Wang N, Chen M, Xu Q, Wang J 2016 Nonlinear Dyn. 84 511

    [10]

    Li Z J, Ma M L, Wang M J, Zeng Y C 2017 Int. J. Electron. Commun. 71 21

    [11]

    Zhang X G, Sun H T, Zhao J L, Liu J Z, Ma Y D, Han T W 2014 Acta Phys. Sin. 63 200503 (in Chinese)[张新国, 孙洪涛, 赵金兰, 刘冀钊, 马义德, 韩廷武 2014 63 200503]

    [12]

    Ma M L, Min F H, Shao S Y, Huang M Y 2014 Acta Phys. Sin. 63 010507 (in Chinese)[马美玲, 闵富红, 邵书义, 黄苗玉 2014 63 010507]

    [13]

    Banerjee T 2012 Nonlinear Dyn. 68 565

    [14]

    Cafagna D, Grassi G 2008 Int. J. Bifurcation Chaos 18 615

    [15]

    Agarwal R P, El-Sayed A M A, Salman S M 2013 Adv. Differ. Equ-NY 1 320

    [16]

    Zhang H, Chen D Y, Zhou K, Wang Y C 2015 Chin. Phys. B 24 030203

    [17]

    Zhu H, Zhou S, Zhang J 2009 Chaos Solitons Fract. 39 1595

    [18]

    Li C P, Deng W H, Xu D 2006 Physica A 36 171

    [19]

    Rocha R, Medrano T R O 2009 Nonlinear Dyn. 56 389

    [20]

    Medrano T R O, Rocha R 2014 Int. J. Bifurcation Chaos 24 1430025

    [21]

    Hartly T T, Lorenzo C F, Qammer H K 1995 IEEE Trans. CAS I 42 485

    [22]

    Zhu H 2007 M. S. Dissertation (Chongqing:Chongqing University) (in Chinese)[朱浩 2007 硕士学位论文 (重庆:重庆大学)]

    [23]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504 (in Chinese)[胡建兵, 赵灵冬 2013 62 240504]

    [24]

    Sun K H, Yang J L, Ding J F, Sheng L Y 2010 Acta Phys. Sin. 59 8385 (in Chinese)[孙克辉, 杨静利, 丁家峰, 盛利元 2010 59 8385]

  • [1] 郑广超, 刘崇新, 王琰. 一种具有隐藏吸引子的分数阶混沌系统的动力学分析及有限时间同步.  , 2018, 67(5): 050502. doi: 10.7498/aps.67.20172354
    [2] 高飞, 胡道楠, 童恒庆, 王传美. 分数阶Willis环脑迟发性动脉瘤时滞系统混沌分析.  , 2018, 67(15): 150501. doi: 10.7498/aps.67.20180262
    [3] 李睿, 张广军, 姚宏, 朱涛, 张志浩. 参数不确定的分数阶混沌系统广义错位延时投影同步.  , 2014, 63(23): 230501. doi: 10.7498/aps.63.230501
    [4] 王斌, 吴超, 朱德兰. 一个新的分数阶混沌系统的翼倍增及滑模同步.  , 2013, 62(23): 230506. doi: 10.7498/aps.62.230506
    [5] 刘福才, 李俊义, 臧秀凤. 基于自适应主动及滑模控制的分数阶超混沌系统异结构反同步.  , 2011, 60(3): 030504. doi: 10.7498/aps.60.030504
    [6] 杨红, 王瑞. 基于反馈和多最小二乘支持向量机的分数阶混沌系统控制.  , 2011, 60(7): 070508. doi: 10.7498/aps.60.070508
    [7] 赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵. 分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步.  , 2011, 60(10): 100507. doi: 10.7498/aps.60.100507
    [8] 胡建兵, 章国安, 赵灵冬, 曾金全. 间歇同步分数阶统一混沌系统.  , 2011, 60(6): 060504. doi: 10.7498/aps.60.060504
    [9] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用.  , 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [10] 阎晓妹, 刘丁. 基于最小二乘支持向量机的分数阶混沌系统控制.  , 2010, 59(5): 3043-3048. doi: 10.7498/aps.59.3043
    [11] 赵灵冬, 胡建兵, 刘旭辉. 参数未知的分数阶超混沌Lorenz系统的自适应追踪控制与同步.  , 2010, 59(4): 2305-2309. doi: 10.7498/aps.59.2305
    [12] 张若洵, 杨洋, 杨世平. 分数阶统一混沌系统的自适应同步.  , 2009, 58(9): 6039-6044. doi: 10.7498/aps.58.6039
    [13] 胡建兵, 韩焱, 赵灵冬. 一种新的分数阶系统稳定理论及在back-stepping方法同步分数阶混沌系统中的应用.  , 2009, 58(4): 2235-2239. doi: 10.7498/aps.58.2235
    [14] 张若洵, 杨世平. 分数阶共轭Chen混沌系统中的混沌及其电路实验仿真.  , 2009, 58(5): 2957-2962. doi: 10.7498/aps.58.2957
    [15] 胡建兵, 韩焱, 赵灵冬. 自适应同步参数未知的异结构分数阶超混沌系统.  , 2009, 58(3): 1441-1445. doi: 10.7498/aps.58.1441
    [16] 赵品栋, 张晓丹. 一类分数阶混沌系统的研究.  , 2008, 57(5): 2791-2798. doi: 10.7498/aps.57.2791
    [17] 张若洵, 杨世平. 一个分数阶新超混沌系统的同步.  , 2008, 57(11): 6837-6843. doi: 10.7498/aps.57.6837
    [18] 陈向荣, 刘崇新, 李永勋. 基于非线性观测器的一类分数阶混沌系统完全状态投影同步.  , 2008, 57(3): 1453-1457. doi: 10.7498/aps.57.1453
    [19] 邵仕泉, 高 心, 刘兴文. 两个耦合的分数阶Chen系统的混沌投影同步控制.  , 2007, 56(12): 6815-6819. doi: 10.7498/aps.56.6815
    [20] 王发强, 刘崇新. 分数阶临界混沌系统及电路实验的研究.  , 2006, 55(8): 3922-3927. doi: 10.7498/aps.55.3922
计量
  • 文章访问数:  5842
  • PDF下载量:  276
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-20
  • 修回日期:  2017-08-14
  • 刊出日期:  2017-12-05

/

返回文章
返回
Baidu
map