搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温冷冻靶温度动态特性的数值模拟研究

陈鹏玮 厉彦忠 李翠 代飞 丁岚 辛毅

引用本文:
Citation:

低温冷冻靶温度动态特性的数值模拟研究

陈鹏玮, 厉彦忠, 李翠, 代飞, 丁岚, 辛毅

Numerical simulation of dynamic thermal characteristics of cryogenic target

Chen Peng-Wei, Li Yan-Zhong, Li Cui, Dai Fei, Ding Lan, Xin Yi
PDF
导出引用
  • 惯性约束聚变点火成功的关键之一在于靶丸内形成均匀的氘氚冰层,靶丸周围的温度场对冰层质量有很大影响.首先通过实验靶系统实验验证了数值计算模型的可靠性,在此模型的基础上,对低温冷冻靶装置的热物理问题特别是温度动态特性问题展开了数值模拟,重点考察冷环温度波动时,温度传递衰减过程的规律以及各影响因素对于温度传递衰减过程的影响.结果显示:冷环温度一定时,填充气体压力降低、填充气体中氦气比例增大,靶丸表面温度均匀性提高;当冷环温度波动时,温度波动的周期减小、振幅减小、填充气体压力升高、填充气体中氦气比例降低有利于控制靶丸表面温度波动;冷环温度波动的周期适中、振幅减小、填充气体压力降低、填充气体中氦气比例提高有利于改善靶丸表面温度均匀性.研究结果对实验中冷冻靶合理配置各参数实现温度控制具有重要参考价值.
    Fusion power offers the prospect of a safe and clean sustainable energy source, and is of increasing importance for meeting the world energy demand and curbing CO2 emissions. For an indirect-driven inertial confinement cryogenic target, the D-T ice layer inside the capsule should have a uniformity more than 99% and an inner surface roughness less than a root mean square value of 1 m to avoid Rayleigh-Taylor instabilities. And this highly smooth ice layer required for ignition is considered to be affected by the thermal environment around the fuel capsule. In the present study, a numerical investigation is conducted to examine the static and dynamic characteristics of the thermal environment outside the fuel capsule. Numerical model is proposed and verified by a simplified cryogenic target, and the calculated temperature distribution around the capsule shows to be in good agreement with the experimental data. Based on the established model, the propagation of periodic disturbance of cooling wall temperature in the hohlraum is investigated, and the relations between the temperature disturbance on the cooling wall and the temperature distribution around the capsule surface are obtained. The effects of disturbance amplitude, the disturbance period, and the hohlraum gas composition on the propagation process are investigated separately. The results indicate that for stable cooling temperature, the thermal environment around the capsule shows certain dependence on the gas filled in the hohlraum. The temperature uniformity of the capsule outer surface deteriorates with the increase of fill gas pressure but can be improved by increasing the He content of the filling gas mixture. At an oscillating cooling temperature, the attenuation of amplitude is significant when the periodic disturbance propagates from the cooling rings to the hohlraum and to the capsule surface. For the sine wave form disturbance investigated in the present study, shorter disturbance period results in larger attenuation of the disturbance amplitude. Higher gas pressure leads to smaller amplitude of average temperature on the capsule outer surface. The propagation process of cooling temperature disturbance also demonstrates dependence on the filling gas composition. The higher fraction of H2 in the He-H2 mixture helps to attenuate the disturbance amplitude and suppress the propagation of the temperature disturbance. However, the temperature uniformity around the capsule exhibits different characteristics from cooling temperature disturbance. Under the oscillating cooling conditions, moderate period, lower amplitude, lower pressure and higher fraction of He in the He-H2 mixture help to improve the temperature uniformity around the capsule. The results are of guiding significance for determining the controlling scheme in experiment and further design option for the cryogenic target.
      通信作者: 厉彦忠, yzli-epe@mail.xjtu.edu.cn
    • 基金项目: 国家重大专项(批准号:***040304.1)、国家自然科学基金(批准号:51506158)和航天低温推进剂技术国家重点实验室开放课题(批准号:SKLTSCP1614)资助的课题.
      Corresponding author: Li Yan-Zhong, yzli-epe@mail.xjtu.edu.cn
    • Funds: Project supported by the National Special Program of China (Grant No. ***040304.1), the National Natural Science Foundation of China (Grant No. 51506158), and the State Key Laboratory of Technologies in Space Cryogenic Propellants, Beijing, China (Grant No. SKLTSCP1614).
    [1]

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303 (in Chinese)[张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303]

    [2]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404]

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energ. Policy 74 31

    [5]

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204 (in Chinese)[张占文, 漆小波, 李波 2012 61 145204]

    [6]

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201 (in Chinese)[黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201]

    [7]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357

    [8]

    Holmlid L 2014 J. Fusion Energ. 33 348

    [9]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [10]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci. Technol. 49 565

    [11]

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230 (in Chinese)[王凯, 谢端, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230]

    [12]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343

    [13]

    McKenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, McCrory R L 2001 Phys. Plasmas 8 2315

    [14]

    Martin M, Gauvin C, Moll G, Raphael O, Legaie O, Jeannot L 2013 Fusion Sci. Technol. 63 82

    [15]

    Moll G, Martin M, Baclet P 2007 Fusion Sci. Technol. 51 737

    [16]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574

    [17]

    London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2005 Fusion Sci. Technol. 49 608

    [18]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese)[王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [19]

    Bi P, Liu Y Q, Tang Y J, Yang X D, Lei H L 2010 Acta Phys. Sin. 59 7531 (in Chinese)[毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐 2010 59 7531]

    [20]

    Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese)[尹剑, 陈绍华, 温成伟, 夏立东, 李海荣, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 64 015202]

    [21]

    Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283

    [22]

    Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2006 Fusion Sci. Technol. 49 600

    [23]

    Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2007 Fusion Sci. Technol. 51 747

    [24]

    Aleksandrova I V, Akunets A A, Koresheva E R, Koshelev E L, Timasheva T P 2016 Bull. Lebedev. Phys. Inst. 43 352

    [25]

    Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese)[王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]

    [26]

    Motojima O, Yamada H, Ashikawa N, Emoto M, Funaba H, Goto M https://www.researchgate.net/publication/237125310_Recent_Development_of_LHD_Experiment 2003 J. Plasma Fusion Res. 5 22

    [27]

    Hamaguchi S, Imagawa S, Obana T, Yanagi N, Moriuchi S, Sekiguchi H, Oba K, Mito T, Motojima O, Okamura T, Semba T, Tyoshinaga S, Wakisaka H 1985 J. Heat Trans. 107 133

    [28]

    Zhong Z Y, Lloyd J R, Yang K T 1985 J. Heat Trans.107 133

    [29]

    Zhuang P, Liu F, Turner I, Gu Y T 2014 Appl. Math. Model. 38 3860

    [30]

    Haan S W, Atherton J, Clark D S, Hammel B A, Callahan D A, Cerjan C J, Dewald E L, Dixit S, Edwards M J, Glenzer S, Hatchett S P, Hicks D, Jones O S, Landen O L, Lindl J D, Marinak M M, MacGowan, B J, MacKinnon A J, Spears B K, Suter L J, Town R P, Weber S V, Kline J L, Wilson D C 2013 Fusion Sci. Technol. 63 67

    [31]

    Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182

    [32]

    Martin M, Moll G, Lallet F, Choux A, Collier R, Legaie O, Jeannot L 2011 Fusion Sci. Technol. 59 166

    [33]

    Souers P C 1986 Hydrogen Properties for Fusion Energy (Berkeley: University of California Press) p106

    [34]

    Bari A, Zarco-Pernia E, De Mara J M G 2014 Appl.Therm. Eng. 63 304

    [35]

    Berger R L, Suter L J, Divol L, London R A, Chapman T, Froula D H, Meezan N B, Neumayer P, Glenzer S H 2015 Phys. Rev. E 91 031103

    [36]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Lin Y, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Contr. Fusion 55 103001

    [37]

    Moll G, Charton S 2004 Fusion Sci. Technol. 45 233

  • [1]

    Zhang X, Zhang X Z, Tan X Y, Yu Y, Wan C H 2012 Acta Phys. Sin. 61 147303 (in Chinese)[张歆, 章晓中, 谭新玉, 于奕, 万蔡华 2012 61 147303]

    [2]

    Yang X D, Chen H, Bi E B, Han L Y 2015 Acta Phys. Sin. 64 038404 (in Chinese)[杨旭东, 陈汉, 毕恩兵, 韩礼元 2015 64 038404]

    [3]

    Horvath A, Rachlew E 2016 Ambio 45 38

    [4]

    Chen W M, Kim H, Yamaguchi H 2014 Energ. Policy 74 31

    [5]

    Zhang Z W, Qi X B, Li B 2012 Acta Phys. Sin. 61 145204 (in Chinese)[张占文, 漆小波, 李波 2012 61 145204]

    [6]

    Huang X, Peng S M, Zhou X S, Yu M M, Yin J, Wen C W 2015 Acta Phys. Sin. 64 215201 (in Chinese)[黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟 2015 64 215201]

    [7]

    Tang J, Xie Z Y, Du A, Ye J J, Zhang Z H, Shen J, Zhou B 2016 J. Fusion Energ. 35 357

    [8]

    Holmlid L 2014 J. Fusion Energ. 33 348

    [9]

    Lindl J D, Amendt P, Berger R L, Glendinning G, Glenzer S H, Haan S W, Kauffman R L, Landen O L, Suter L J 2004 Phys. Plasmas 11 339

    [10]

    Baclet P, Bachelet F, Choux A, Fleury E, Jeannot L, Laffite S, Martin M, Moll G, Pascal G, Reneaume B, Theobald M 2006 Fusion Sci. Technol. 49 565

    [11]

    Wang K, Xie R, Lin W, Liu Y Q, Li J, Qi X B, Tang Y J, Lei H L 2013 High Power Laser and Particle Beams 25 3230 (in Chinese)[王凯, 谢端, 林伟, 刘元琼, 黎军, 漆小波, 唐永建, 雷海乐 2013 强激光与粒子束 25 3230]

    [12]

    Hurricane O A, Callahan D A, Casey D T, Celliers P M, Cerjan C, Dewald E L, Dittrich T R, Doppner T, Hinkel D E, Berzak Hopkins L F, Kline J L, Le Pape S, Ma T, MacPhee A G, Milovich J L, Pak A, Park H S, Patel P K, Remington B A, Salmonson J D, Springer P T, Tommasini R 2014 Nature 506 343

    [13]

    McKenty P W, Goncharov V N, Town R P J, Skupsky S, Betti R, McCrory R L 2001 Phys. Plasmas 8 2315

    [14]

    Martin M, Gauvin C, Moll G, Raphael O, Legaie O, Jeannot L 2013 Fusion Sci. Technol. 63 82

    [15]

    Moll G, Martin M, Baclet P 2007 Fusion Sci. Technol. 51 737

    [16]

    Moll G, Baclet P, Martin M 2006 Fusion Sci. Technol. 49 574

    [17]

    London R A, Kozioziemski B J, Marinak M M, Kerbel G D, Bittner D N 2005 Fusion Sci. Technol. 49 608

    [18]

    Wang F, Peng X S, Shan L Q, Li M, Xue Q X, Xu T, Wei H Y 2014 Acta Phys. Sin. 63 185202 (in Chinese)[王峰, 彭晓世, 单连强, 李牧, 薛全喜, 徐涛, 魏惠月 2014 63 185202]

    [19]

    Bi P, Liu Y Q, Tang Y J, Yang X D, Lei H L 2010 Acta Phys. Sin. 59 7531 (in Chinese)[毕鹏, 刘元琼, 唐永建, 杨向东, 雷海乐 2010 59 7531]

    [20]

    Yin J, Chen S H, Wen C W, Xia L D, Li H R, Huang X, Yu M M, Liang J H, Peng S M 2015 Acta Phys. Sin. 64 015202 (in Chinese)[尹剑, 陈绍华, 温成伟, 夏立东, 李海荣, 黄鑫, 余铭铭, 梁建华, 彭述明 2015 64 015202]

    [21]

    Moll G, Martin M, Collier R 2009 Fusion Sci. Technol. 55 283

    [22]

    Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2006 Fusion Sci. Technol. 49 600

    [23]

    Martin M, Gauvin C, Choux A, Baclet P, Pascal G 2007 Fusion Sci. Technol. 51 747

    [24]

    Aleksandrova I V, Akunets A A, Koresheva E R, Koshelev E L, Timasheva T P 2016 Bull. Lebedev. Phys. Inst. 43 352

    [25]

    Wang K, Lin W, Liu Y Q, Xie D, Li J, Ma K Q, Tang Y J, Lei H L 2012 Acta Phys. Sin. 61 195204 (in Chinese)[王凯, 林伟, 刘元琼, 谢端, 黎军, 马坤全, 唐永建, 雷海乐 2012 61 195204]

    [26]

    Motojima O, Yamada H, Ashikawa N, Emoto M, Funaba H, Goto M https://www.researchgate.net/publication/237125310_Recent_Development_of_LHD_Experiment 2003 J. Plasma Fusion Res. 5 22

    [27]

    Hamaguchi S, Imagawa S, Obana T, Yanagi N, Moriuchi S, Sekiguchi H, Oba K, Mito T, Motojima O, Okamura T, Semba T, Tyoshinaga S, Wakisaka H 1985 J. Heat Trans. 107 133

    [28]

    Zhong Z Y, Lloyd J R, Yang K T 1985 J. Heat Trans.107 133

    [29]

    Zhuang P, Liu F, Turner I, Gu Y T 2014 Appl. Math. Model. 38 3860

    [30]

    Haan S W, Atherton J, Clark D S, Hammel B A, Callahan D A, Cerjan C J, Dewald E L, Dixit S, Edwards M J, Glenzer S, Hatchett S P, Hicks D, Jones O S, Landen O L, Lindl J D, Marinak M M, MacGowan, B J, MacKinnon A J, Spears B K, Suter L J, Town R P, Weber S V, Kline J L, Wilson D C 2013 Fusion Sci. Technol. 63 67

    [31]

    Moll G, Martin M, Collier R 2011 Fusion Sci. Technol. 59 182

    [32]

    Martin M, Moll G, Lallet F, Choux A, Collier R, Legaie O, Jeannot L 2011 Fusion Sci. Technol. 59 166

    [33]

    Souers P C 1986 Hydrogen Properties for Fusion Energy (Berkeley: University of California Press) p106

    [34]

    Bari A, Zarco-Pernia E, De Mara J M G 2014 Appl.Therm. Eng. 63 304

    [35]

    Berger R L, Suter L J, Divol L, London R A, Chapman T, Froula D H, Meezan N B, Neumayer P, Glenzer S H 2015 Phys. Rev. E 91 031103

    [36]

    Kirkwood R K, Moody J D, Kline J, Dewald E, Glenzer S, Divol L, Michel P, Hinkel D, Berger R, Williams E, Milovich J, Lin Y, Rose H, MacGowan B, Landen O, Rosen M, Lindl J 2013 Plasma Phys. Contr. Fusion 55 103001

    [37]

    Moll G, Charton S 2004 Fusion Sci. Technol. 45 233

  • [1] 杨为明, 段晓溪, 张琛, 理玉龙, 刘浩, 关赞洋, 章欢, 孙亮, 董云松, 杨冬, 王哲斌, 杨家敏. 小尺度靶丸冲击波调控的冲击波测量技术优化及应用.  , 2024, 73(12): 125203. doi: 10.7498/aps.73.20232000
    [2] 黄天晅, 吴畅书, 陈忠靖, 晏骥, 李欣, 葛峰峻, 张兴, 蒋炜, 邓博, 侯立飞, 蒲昱东, 董云松, 王立锋. 在间接驱动内爆实验中采用花生腔增强对称性调控.  , 2023, 72(2): 025201. doi: 10.7498/aps.72.20220861
    [3] 张棋, 马积瑞, 范金燕, 张杰. 对美国国家点火装置2010年以来实验设计思路的分析.  , 2022, 71(13): 135202. doi: 10.7498/aps.71.20220199
    [4] 邹雄, 漆小波, 张涛先, 高章帆, 黄卫星. 惯性约束聚变靶丸内杂质气体抽空流洗过程的数值模拟.  , 2021, 70(7): 075207. doi: 10.7498/aps.70.20201491
    [5] 杨钧兰, 钟哲强, 翁小凤, 张彬. 惯性约束聚变装置中靶面光场特性的统计表征方法.  , 2019, 68(8): 084207. doi: 10.7498/aps.68.20182091
    [6] 肖德龙, 戴自换, 孙顺凯, 丁宁, 张扬, 邬吉明, 尹丽, 束小建. Z箍缩动态黑腔驱动靶丸内爆动力学.  , 2018, 67(2): 025203. doi: 10.7498/aps.67.20171640
    [7] 李宏勋, 张锐, 朱娜, 田小程, 许党朋, 周丹丹, 宗兆玉, 范孟秋, 谢亮华, 郑天然, 李钊历. 基于光束参量优化实现直接驱动靶丸均匀辐照.  , 2017, 66(10): 105202. doi: 10.7498/aps.66.105202
    [8] 赵英奎, 欧阳碧耀, 文武, 王敏. 惯性约束聚变中氘氚燃料整体点火与燃烧条件研究.  , 2015, 64(4): 045205. doi: 10.7498/aps.64.045205
    [9] 邓学伟, 周维, 袁强, 代万俊, 胡东霞, 朱启华, 景峰. 甚多束激光直接驱动靶面辐照均匀性研究.  , 2015, 64(19): 195203. doi: 10.7498/aps.64.195203
    [10] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟. 黑腔冷冻靶传热与自然对流的数值模拟研究.  , 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [11] 晏骥, 张兴, 郑建华, 袁永腾, 康洞国, 葛峰骏, 陈黎, 宋仔峰, 袁铮, 蒋炜, 余波, 陈伯伦, 蒲昱东, 黄天晅. 氘氘-塑料靶丸变收缩比内爆物理实验研究.  , 2015, 64(12): 125203. doi: 10.7498/aps.64.125203
    [12] 景龙飞, 黄天晅, 江少恩, 陈伯伦, 蒲昱东, 胡峰, 程书博. 神光-Ⅱ和神光-Ⅲ原型内爆对称性实验的模型分析.  , 2012, 61(10): 105205. doi: 10.7498/aps.61.105205
    [13] 晏骥, 郑建华, 陈黎, 林稚伟, 江少恩. X射线相衬成像技术应用于高能量密度物理条件下内爆靶丸诊断.  , 2012, 61(14): 148701. doi: 10.7498/aps.61.148701
    [14] 张占文, 漆小波, 李波. 惯性约束聚变点火靶候选靶丸特点及制备研究进展.  , 2012, 61(14): 145204. doi: 10.7498/aps.61.145204
    [15] 晏骥, 江少恩, 苏明, 巫顺超, 林稚伟. X射线相衬成像应用于惯性约束核聚变多层球壳靶丸检测.  , 2012, 61(6): 068703. doi: 10.7498/aps.61.068703
    [16] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究.  , 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [17] 姚欣, 高福华, 高博, 张怡霄, 黄利新, 郭永康, 林祥棣. 惯性约束聚变驱动器终端束匀滑器件前置时频率转换系统优化研究.  , 2009, 58(7): 4598-4604. doi: 10.7498/aps.58.4598
    [18] 姚欣, 高福华, 张怡霄, 温圣林, 郭永康, 林祥棣. 激光惯性约束聚变驱动器终端光学系统中束匀滑器件前置的条件研究.  , 2009, 58(5): 3130-3134. doi: 10.7498/aps.58.3130
    [19] 姚 欣, 高福华, 温圣林, 张怡霄, 李剑峰, 郭永康. 谐波分离和光束取样集成光学元件强激光近场调制及损伤特性研究.  , 2007, 56(12): 6945-6953. doi: 10.7498/aps.56.6945
    [20] 唐永建, 赵永宽, 蒋伟阳, 朱正和, 刘元琼. 等温环境中激光惯性约束聚变冷冻靶丸内部液氢层分布(已撤稿).  , 1999, 48(12): 2208-2214. doi: 10.7498/aps.48.2208
计量
  • 文章访问数:  5965
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-16
  • 修回日期:  2017-06-10
  • 刊出日期:  2017-10-05

/

返回文章
返回
Baidu
map