-
以密度泛函理论为基础,使用投影缀加波方法、VASP程序包研究了FeMnP1-xTx(T=Si,Ga,Ge)化合物的力学性质,结果表明FeMnP1-xGax化合物的晶格参数、弹性常数和电子结构与FeMnP1-xGex化合物比较接近,同时该化合物在力学上稳定,是预期具有较大的磁熵变和高磁热效应的材料.依据Pugh判据,FeMnP0.67T0.33(T=Si,Ga,Ge)化合物具有良好的延展性,三者之中FeMnP0.67Ga0.33韧性最好,FeMnP0.67Si0.33韧性相对较差,说明Ga替代P可改善此类化合物的机械性能.最后从化合物体系电子总态密度随不同掺杂T原子的演化规律解释了自洽计算得到的弹性常数的变化规律.
-
关键词:
- 第一性原理计算 /
- FeMnP1-xTx(T=Si,Ga,Ge)化合物 /
- 机械性能
Magnetic refrigeration technology is considered as a better alternative to traditional steam compression scheme, since it has many advantages such as environment friendly characteristic, more compact solid refrigerant, low cost, etc. The mechanical stability is of essential importance for serving as magnetic refrigerant materials which work under repeatedly thermal and magnetic cycles. Recent experiment reveals that the polycrystalline FeMnP1-xSix compounds are brittle, and even fracture of samples during post heat treatment is observed. Therefore, the improvement of the ductility of Fe2P-Type FeMn-based magnetocaloric materials becomes an important issue in practical application. So far, there are few studies of the mechanical properties of these compounds. Alloying is an effective method to improve the mechanical properties of single phase materials, and Ga or Ge could be a better choice to replace the Si element. In this paper, we study the mechanical properties of giant magnetocaloric FeMnP1-xTx (T=Si, Ga, Ge) compounds by the projector augmented wave method as implemented in VASP (Vienna ab initio simulation package) in the framework of density functional theory. It is found that the lattice parameter, total energy, magnetic moment, elastic constant and the electronic structure of FeMnP1-xGax compounds are similar to those of FeMnP1-xGex compounds, therefore, it is believed that the FeMnP1-xGax compounds are candidate refrigerant for room temperature magnetic refrigeration. The relatively large single crystalline elastic constants of FeMnP1-xTx (T=Si, Ga, Ge) compounds show that this family of compounds is mechanically stable. This ensures the long-term applicability of FeMnP1-xTx compounds in magnetic refrigeration facilities. For polycrystalline compounds, we calculate their shear moduli and bulk moduli by Hill averaging scheme. And according to Pugh criterion, the ductility or brittleness characteristics of FeMnP1-xTx (T=Si, Ga, Ge) compounds are discussed. All the FeMnP0.67T0.33 (T=Si, Ga, Ge) compounds are ductile, among them, FeMnP0.67Ga0.33 compound shows the best ductility, whereas the ductility of FeMnP0.67Si0.33 compound is the weakest. This result proves that substituting P with Ga could improve the ductility of this class of compound. The mechanical properties of polycrystalline FeMnP0.33T0.67 compounds are close to the ductile/brittle critical point. For FeMnP0.33T0.67 compounds, the T atoms just occupy the 2c sites of metalloid atom in Fe2P-type structure, therefore it is expected that the occupation disorders of P and T atoms at high T concentration could improve the ductility of the compounds according to the result of FeMnP0.67Ga0.33 compound. Finally, the self-consistent elastic constants of different compounds are understood from the calculated electronic density of states and force theorem.[1] Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Smith A, Bahl C R, Bjork R, Engelbrecht K, Nielsen K K, Pryds N 2012 Adv. Energy Mater. 2 1288
[3] Yibole H, Guillou F, Caron L, Jimenez E, de Groot F M F, Roy P, de Groot R, Bruck E 2015 Phys. Rev. B 91 014429
[4] Bruck E, Tegus O, Thanh D T C, Buschow K H J 2007 J. Magn. Magn. Mater. 310 2793
[5] Li G J, Li W, Stephan S, Li X Q, Delczeg-Czirjak E K, Yaroslav O K, Olle E, Brje J, Levente V 2014 Appl. Phys. Lett. 105 262405
[6] Annaorazov M P, Nikitin S A, Tyurin A L, Asatryan K A, Dovletvo A K 1996 J. Appl. Phys. 79 1689
[7] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[8] Fujita A, Fujieda S, Hasegawa Y, Fukamichi K 2003 Phys. Rev. B 67 104416
[9] Hai X Y, Mayer C, Colin C V, Miraglia S 2016 J. Magn. Magn. Mater. 400 344
[10] Li S P, Huang R J, Zhao Y Q, Wang W, Li L F 2015 Phys. Chem. Chem. Phys. 17 30999
[11] Kudryavtsev Y V, Uvarov N V, Iermolenko V N, Glavatskyy I N, Dubowik J 2012 Acta Mater. 60 4780
[12] Tang X D, Wang W H, Zhu W, Liu E K, Wu G H, Meng F B, Liu H Y, Luo H Z 2010 Appl. Phys. Lett. 97 242513
[13] Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439
[14] Guillou F, Porcari G, Yibole H, van Dijk N H, Bruck E 2014 Adv. Mater. 26 2671
[15] Miao X F, Caron L, Roy P, Dung N H, Zhang L, Kockelmann A, de Groot R A, van Dijk N H, Bruck E 2014 Phys. Rev. B 89 174429
[16] Gercsi Z, Delczeg-Czirjak E K, Vitos L, Wills A S, Daoud A A, Sandeman K G 2013 Phys. Rev. B 88 024417
[17] Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150
[18] Guillou F, Ollefs K, Wilhelm F, Rogalev A 2015 Phys. Rev. B 92 224427
[19] Hoglin V, Andersson M S, Sarkar T, Nordblad P, Sahlberg M 2015 J. Magn. Magn. Mater. 374 455
[20] Delczeg-Czirjak E K, Pereiro M, Bergqvist L, Kvashnin Y O, Marco I D, Li G J, Vitos L, Eriksson O 2014 Phys. Rev. B 90 214436
[21] Roy P, Torun E, de Groot R A 2016 Phys. Rev. B 93 094110
[22] Liu D, Yue M, Zhang J X, Mcqueen T M, Lynn J W, Wang X L, Chen Y, Li J Y, Cava R J, Liu X B, Altounian Z, Huang Q 2009 Phys. Rev. B 79 014435
[23] Vitos L 2007 Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (London: Springer-Verlag) pp107-113
[24] Murnaghan F D 1994 The Compressibility of Media Under Extreme Pressures (USA: Proc Natl Acad Sci) pp244-247
[25] Grimvall G 1999 Thermophysical Properties of Materials (The Netherlands: Elsevier Science B V) pp27-40
[26] Ernzerhof M, Scuseria G E 2000 Theor. Chem. Acc. 103 259
[27] Kohn W, Sham L J 1965 Phys. Rev. 140 1133
[28] Blchl P E 1994 Phys. Rev. B 50 17953
[29] Kresse G, Hanfner J 1993 Phys. Rev. B 47 558
[30] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[32] Roy P, Brck E, de Groot R A 2016 Phys. Rev. B 93 165101
[33] Pugh S F 1954 Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals (London: Philosophical Magazine) pp823-843
[34] Kwasniak P, Muzyk M, Garbacz H, Kurzydlowski K J 2014 Mater. Sci. Eng. A 590 74
[35] Counts W A, Friak M, Raabe D, Neugebauer J 2009 Acta Mater. 57 69
[36] Mackintosh A R, Andersen O K 1980 Electrons at the Fermi Surface (England: Cambridge University Press) pp149-224
[37] Skriver H L 1985 Phys. Rev. B 31 1909
[38] Zhang H L, Punkkinen M P J, Johansson B, Hertzman S, Vitos L 2010 Phys. Rev. B 81 184105
-
[1] Gschneidner Jr K A, Pecharsky V K, Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[2] Smith A, Bahl C R, Bjork R, Engelbrecht K, Nielsen K K, Pryds N 2012 Adv. Energy Mater. 2 1288
[3] Yibole H, Guillou F, Caron L, Jimenez E, de Groot F M F, Roy P, de Groot R, Bruck E 2015 Phys. Rev. B 91 014429
[4] Bruck E, Tegus O, Thanh D T C, Buschow K H J 2007 J. Magn. Magn. Mater. 310 2793
[5] Li G J, Li W, Stephan S, Li X Q, Delczeg-Czirjak E K, Yaroslav O K, Olle E, Brje J, Levente V 2014 Appl. Phys. Lett. 105 262405
[6] Annaorazov M P, Nikitin S A, Tyurin A L, Asatryan K A, Dovletvo A K 1996 J. Appl. Phys. 79 1689
[7] Pecharsky V K, Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[8] Fujita A, Fujieda S, Hasegawa Y, Fukamichi K 2003 Phys. Rev. B 67 104416
[9] Hai X Y, Mayer C, Colin C V, Miraglia S 2016 J. Magn. Magn. Mater. 400 344
[10] Li S P, Huang R J, Zhao Y Q, Wang W, Li L F 2015 Phys. Chem. Chem. Phys. 17 30999
[11] Kudryavtsev Y V, Uvarov N V, Iermolenko V N, Glavatskyy I N, Dubowik J 2012 Acta Mater. 60 4780
[12] Tang X D, Wang W H, Zhu W, Liu E K, Wu G H, Meng F B, Liu H Y, Luo H Z 2010 Appl. Phys. Lett. 97 242513
[13] Moya X, Kar-Narayan S, Mathur N D 2014 Nat. Mater. 13 439
[14] Guillou F, Porcari G, Yibole H, van Dijk N H, Bruck E 2014 Adv. Mater. 26 2671
[15] Miao X F, Caron L, Roy P, Dung N H, Zhang L, Kockelmann A, de Groot R A, van Dijk N H, Bruck E 2014 Phys. Rev. B 89 174429
[16] Gercsi Z, Delczeg-Czirjak E K, Vitos L, Wills A S, Daoud A A, Sandeman K G 2013 Phys. Rev. B 88 024417
[17] Tegus O, Bruck E, Buschow K H J, de Boer F R 2002 Nature 415 150
[18] Guillou F, Ollefs K, Wilhelm F, Rogalev A 2015 Phys. Rev. B 92 224427
[19] Hoglin V, Andersson M S, Sarkar T, Nordblad P, Sahlberg M 2015 J. Magn. Magn. Mater. 374 455
[20] Delczeg-Czirjak E K, Pereiro M, Bergqvist L, Kvashnin Y O, Marco I D, Li G J, Vitos L, Eriksson O 2014 Phys. Rev. B 90 214436
[21] Roy P, Torun E, de Groot R A 2016 Phys. Rev. B 93 094110
[22] Liu D, Yue M, Zhang J X, Mcqueen T M, Lynn J W, Wang X L, Chen Y, Li J Y, Cava R J, Liu X B, Altounian Z, Huang Q 2009 Phys. Rev. B 79 014435
[23] Vitos L 2007 Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications (London: Springer-Verlag) pp107-113
[24] Murnaghan F D 1994 The Compressibility of Media Under Extreme Pressures (USA: Proc Natl Acad Sci) pp244-247
[25] Grimvall G 1999 Thermophysical Properties of Materials (The Netherlands: Elsevier Science B V) pp27-40
[26] Ernzerhof M, Scuseria G E 2000 Theor. Chem. Acc. 103 259
[27] Kohn W, Sham L J 1965 Phys. Rev. 140 1133
[28] Blchl P E 1994 Phys. Rev. B 50 17953
[29] Kresse G, Hanfner J 1993 Phys. Rev. B 47 558
[30] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188
[32] Roy P, Brck E, de Groot R A 2016 Phys. Rev. B 93 165101
[33] Pugh S F 1954 Relations between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals (London: Philosophical Magazine) pp823-843
[34] Kwasniak P, Muzyk M, Garbacz H, Kurzydlowski K J 2014 Mater. Sci. Eng. A 590 74
[35] Counts W A, Friak M, Raabe D, Neugebauer J 2009 Acta Mater. 57 69
[36] Mackintosh A R, Andersen O K 1980 Electrons at the Fermi Surface (England: Cambridge University Press) pp149-224
[37] Skriver H L 1985 Phys. Rev. B 31 1909
[38] Zhang H L, Punkkinen M P J, Johansson B, Hertzman S, Vitos L 2010 Phys. Rev. B 81 184105
计量
- 文章访问数: 5906
- PDF下载量: 209
- 被引次数: 0