搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空气中一维声栅对微粒的声操控

黄先玉 蔡飞燕 李文成 郑海荣 何兆剑 邓科 赵鹤平

引用本文:
Citation:

空气中一维声栅对微粒的声操控

黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平

Acoustic manipulation of particles by a resonant one-dimensional grating in air

Huang Xian-Yu, Cai Fei-Yan, Li Wen-Cheng, Zheng Hai-Rong, He Zhao-Jian, Deng Ke, Zhao He-Ping
PDF
导出引用
  • 本文对一维空气声栅表面微粒受到的声辐射力进行了详细的理论研究.首先采用有限元方法研究一维声栅的透射性质及表面声场分布,然后将有限元与动量张量积分结合研究处于一维声栅表面微粒受到的声辐射力特征.声栅共振透射增强是表面周期衍射波与狭缝Fabry-Perot共振耦合形成的,并且与声栅周期和厚度密切相关.研究发现,当共振波长与声栅周期相当时,微粒在其表面可受到指向声栅板面的声吸引力;当共振波长为声栅周期的二倍及以上,微粒可受到指向狭缝中的吸引力,且强度远小于第一种情况的吸引力.因此,在声栅处于共振波长与周期相当的共振模式时,可以在空气中利用声栅表面操控、吸引和排列微粒.
    It is well known that acoustic wave carries momentum and energy. An object in a sound field, which absorbs or reflects sound energy, can be subjected to the acoustic radiation force (ARF), and thus can be manipulated in the contactless and noninvasive manners. This effect has potential applications in the fields of environment monitoring, microbiology, food quality control, etc. Obtaining a tunable trapping or pushing ARF should enable the design of an incident beam profile. However, the conventional acoustic manipulation system with plane wave, standing waves or Gaussian beams, which is usually generated directly by acoustic transducer, cannot be redesigned easily, nor can the corresponding ARF be modulated efficiently. Phononic crystals, which are artificial periodic structure materials, exhibit great advantages in modulating the propagation and distribution of acoustic wave compared with conventional materials, and thus have potential applications in tunable particle manipulation. Here, we present a theoretical study of the ARFs exerted on a cylindrical polystyrene foam particle near the surface of a one-dimensional (1D) grating in air. By using the finite element method (FEM) to investigate the transmission spectra and field distribution of the 1D grating and the FEM combined with momentum-flux tensor to obtain the ARF on the particle, we find that there are two resonance modes in the 1D grating, which origin from the coupling between the diffractive waves excited from the export of periodic apertures and the Fabry-Perot resonance mode inside the apertures. In addition, it can be seen from field distribution that in the first resonant mode, the resonance wavelength is approximate to the period of grating, and the enhanced spatial confinement of acoustic wave is located at the surface of the plate besides in the aperture. In the second resonant mode, the corresponding wavelength is more than twice the period of grating, and the enhanced spatial confinement of acoustic wave is mainly located in the aperture. Moreover, due to the gradient field distribution at the surface of slits and plate in these resonance modes, particles at the surface can be under the action of tunable negative ARFs. In the first resonance mode, the particle can be trapped on the surface of grating. While in the second resonance mode, the particle can be trapped in the aperture, and the amplitude of ARF of this mode is far smaller than that of the first mode. Thus, this system in the first resonance mode may have potential applications in air acoustic manipulation, aligning, and sorting micro-particles.
      通信作者: 蔡飞燕, fy.cai@siat.ac.cn;dengke@jsu.edu.cn ; 邓科, fy.cai@siat.ac.cn;dengke@jsu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11274008,11325420,11404363,11564012,11304119,11304351);深圳基础研究计划(批准号:JCYJ20150521094519482);湖南省自然科学基金(批准号:2016JJ2100)和湖南省教育厅科研项目(批准号:16A170)资助的课题.
      Corresponding author: Cai Fei-Yan, fy.cai@siat.ac.cn;dengke@jsu.edu.cn ; Deng Ke, fy.cai@siat.ac.cn;dengke@jsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos.11274008,11325420,11404363,11564012,11304119,11304351),the Shenzhen Basic Research Program,China (Grant No.JCYJ20150521094519482),the Natural Science Foundation of Hunan Province,China (Grant No.2016JJ2100),and the Natural Science Foundation of Education Department of Hunan Province,China (Grant No.16A170).
    [1]

    Liu Y Y, Hu J H 2009 J. Appl. Phys. 106 034903

    [2]

    Shi J J, Ahmed D, Mao X L, Lin S, Lawit A, Huang T J 2009 Lab Chip 9 2890

    [3]

    Borgnis F E 1953 Rev. Mod. Phys. 25 653

    [4]

    Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N 1993 J. Acoust. Soc. Am. 93 154

    [5]

    Marzo A, Seah S A, W. Drinkwater B, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661

    [6]

    Wang J W, Cheng Y, Liu X J 2014 Chin. Phys. B 23 054301

    [7]

    Wang J W, Yuan B G, Cheng Y, Liu X J 2015 Sci. China:Phys. Mech. Astron. 58 024302

    [8]

    Li Y, Liang B, Xu T, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508

    [9]

    Li Y, Liang B, Zou X Y, Cheng J C 2012 Chin. Phys. Lett. 29 114301

    [10]

    Liu Z Q, Zhang H, Zhang S Y, Fan L 2014 Appl. Phys. Lett. 105 053501

    [11]

    Wang Y R, Zhang H, Zhang S Y, Fan L, Sun H X 2012 J. Acoust. Soc. Am. 131 EL150

    [12]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301

    [13]

    Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731

    [14]

    Wang T, Ke M Z, Xu S J, Feng J H, Qiu C Y, Liu Z Y 2015 Appl. Phys. Lett. 106 163504

    [15]

    Wang T, Ke M Z, Qiu C Y, Liu Z Y 2016 J. Appl. Phys. 119 214502

    [16]

    Qiu C Y, Xu S J, Ke M Z, Liu Z Y 2014 Phys. Rev. B 90 094109

    [17]

    Lu S F, Zhang X, Wu F G, Yao Y W, Chen Z W 2016 J. Appl. Phys. 120 045102

    [18]

    Cai F Y, He Z J, Liu Z Y, Meng L, Cheng X, Zheng H R 2011 Appl. Phys. Lett. 99 253505

    [19]

    Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. Appl. 1 051001

    [20]

    20 He H L, Ouyang S L, He Z J, Deng K, Zhao H P 2015 J. Appl. Phys. 117 164504

    [21]

    Feng R 1999 Ultrasonics Handbook (Danyang:Nanjing University Press) p128 (in Chinese)[冯若1999 超声手册 (丹阳:南京大学出版社) 第128页]

    [22]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301

    [23]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015

    [24]

    Cai F Y, Meng L, Zheng H R 2010 J. Acoust. Soc. Am. 128 1617

    [25]

    Xu S J, Qiu C Y, Liu Z Y 2012 Europhys. Lett. 99 44003

    [26]

    Hahn P, Leibacher I, Baasch T, Dual J 2015 Lab Chip 15 4302

  • [1]

    Liu Y Y, Hu J H 2009 J. Appl. Phys. 106 034903

    [2]

    Shi J J, Ahmed D, Mao X L, Lin S, Lawit A, Huang T J 2009 Lab Chip 9 2890

    [3]

    Borgnis F E 1953 Rev. Mod. Phys. 25 653

    [4]

    Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N 1993 J. Acoust. Soc. Am. 93 154

    [5]

    Marzo A, Seah S A, W. Drinkwater B, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661

    [6]

    Wang J W, Cheng Y, Liu X J 2014 Chin. Phys. B 23 054301

    [7]

    Wang J W, Yuan B G, Cheng Y, Liu X J 2015 Sci. China:Phys. Mech. Astron. 58 024302

    [8]

    Li Y, Liang B, Xu T, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508

    [9]

    Li Y, Liang B, Zou X Y, Cheng J C 2012 Chin. Phys. Lett. 29 114301

    [10]

    Liu Z Q, Zhang H, Zhang S Y, Fan L 2014 Appl. Phys. Lett. 105 053501

    [11]

    Wang Y R, Zhang H, Zhang S Y, Fan L, Sun H X 2012 J. Acoust. Soc. Am. 131 EL150

    [12]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301

    [13]

    Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731

    [14]

    Wang T, Ke M Z, Xu S J, Feng J H, Qiu C Y, Liu Z Y 2015 Appl. Phys. Lett. 106 163504

    [15]

    Wang T, Ke M Z, Qiu C Y, Liu Z Y 2016 J. Appl. Phys. 119 214502

    [16]

    Qiu C Y, Xu S J, Ke M Z, Liu Z Y 2014 Phys. Rev. B 90 094109

    [17]

    Lu S F, Zhang X, Wu F G, Yao Y W, Chen Z W 2016 J. Appl. Phys. 120 045102

    [18]

    Cai F Y, He Z J, Liu Z Y, Meng L, Cheng X, Zheng H R 2011 Appl. Phys. Lett. 99 253505

    [19]

    Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. Appl. 1 051001

    [20]

    20 He H L, Ouyang S L, He Z J, Deng K, Zhao H P 2015 J. Appl. Phys. 117 164504

    [21]

    Feng R 1999 Ultrasonics Handbook (Danyang:Nanjing University Press) p128 (in Chinese)[冯若1999 超声手册 (丹阳:南京大学出版社) 第128页]

    [22]

    Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301

    [23]

    Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015

    [24]

    Cai F Y, Meng L, Zheng H R 2010 J. Acoust. Soc. Am. 128 1617

    [25]

    Xu S J, Qiu C Y, Liu Z Y 2012 Europhys. Lett. 99 44003

    [26]

    Hahn P, Leibacher I, Baasch T, Dual J 2015 Lab Chip 15 4302

  • [1] 胡晨阳, 梁家洛, 郑日翌, 陆久阳, 邓伟胤, 黄学勤, 刘正猷. 一维合成维度水基声子晶体.  , 2024, 73(10): 104301. doi: 10.7498/aps.73.20240298
    [2] 王俊, 蔡飞燕, 张汝钧, 李永川, 周伟, 李飞, 邓科, 郑海荣. 基于压电声子晶体板波声场的微粒操控.  , 2024, 73(7): 074302. doi: 10.7498/aps.73.20231886
    [3] 王燕萍, 蔡飞燕, 李飞, 张汝钧, 李永川, 王金萍, 张欣, 郑海荣. 基于二维声子晶体板共振声场的微粒操控.  , 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [4] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力.  , 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [5] 齐绍富, 蔡飞燕, 田振, 黄先玉, 周娟, 王金萍, 李文成, 郑海荣, 邓科. 基于一维声栅共振场的大规模微粒并行排列 的实验研究.  , 2023, 72(2): 024301. doi: 10.7498/aps.72.20221793
    [6] 陈聪, 张若钦, 李锋, 李志远. 基于亚波长管道增强的漩涡声场悬浮操控微粒和液滴的实验研究.  , 2023, 72(12): 124302. doi: 10.7498/aps.72.20230383
    [7] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似.  , 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [8] 臧雨宸, 林伟军, 苏畅, 吴鹏飞. Gauss声束对离轴椭圆柱的声辐射力矩.  , 2021, 70(8): 084301. doi: 10.7498/aps.70.20201635
    [9] 朱纪霖, 高东宝, 曾新吾. 基于相位变换声镊的单个微粒平面移动操控.  , 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [10] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术.  , 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [11] 梁彬, 袁樱, 程建春. 声单向操控研究进展.  , 2015, 64(9): 094305. doi: 10.7498/aps.64.094305
    [12] 王文刚, 刘正猷, 赵德刚, 柯满竹. 声波在一维声子晶体中共振隧穿的研究.  , 2006, 55(9): 4744-4747. doi: 10.7498/aps.55.4744
    [13] 曹永军, 董纯红, 周培勤. 一维准周期结构声子晶体透射性质的研究.  , 2006, 55(12): 6470-6475. doi: 10.7498/aps.55.6470
    [14] 张碧星, 汪承灏, Anders Bostr?m. 压电条SH声辐射场研究.  , 2005, 54(5): 2111-2117. doi: 10.7498/aps.54.2111
    [15] 王佐卿. 声表面波在线性调频声栅上作Bragg衍射后的聚焦声场.  , 1988, 37(3): 388-395. doi: 10.7498/aps.37.388
    [16] 王佐卿, 汪承浩, 周素华. 声表面波在声栅上的反常Bragg衍射.  , 1988, 37(3): 379-387. doi: 10.7498/aps.37.379
    [17] 王佐卿, 周素华, 汪承浩. 声表面波在声栅上的Bragg衍射.  , 1983, 32(2): 156-167. doi: 10.7498/aps.32.156
    [18] 杨振青, 常树人. 一维扭折声子气的动力性质.  , 1982, 31(9): 1243-1249. doi: 10.7498/aps.31.1243
    [19] 杨振青. 一维互作用扭折-声子气体的统计理论.  , 1981, 30(3): 389-400. doi: 10.7498/aps.30.389
    [20] 钱祖文. 关于声散射声.  , 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
计量
  • 文章访问数:  6178
  • PDF下载量:  289
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-09-26
  • 修回日期:  2016-11-22
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map