-
本文对一维空气声栅表面微粒受到的声辐射力进行了详细的理论研究.首先采用有限元方法研究一维声栅的透射性质及表面声场分布,然后将有限元与动量张量积分结合研究处于一维声栅表面微粒受到的声辐射力特征.声栅共振透射增强是表面周期衍射波与狭缝Fabry-Perot共振耦合形成的,并且与声栅周期和厚度密切相关.研究发现,当共振波长与声栅周期相当时,微粒在其表面可受到指向声栅板面的声吸引力;当共振波长为声栅周期的二倍及以上,微粒可受到指向狭缝中的吸引力,且强度远小于第一种情况的吸引力.因此,在声栅处于共振波长与周期相当的共振模式时,可以在空气中利用声栅表面操控、吸引和排列微粒.It is well known that acoustic wave carries momentum and energy. An object in a sound field, which absorbs or reflects sound energy, can be subjected to the acoustic radiation force (ARF), and thus can be manipulated in the contactless and noninvasive manners. This effect has potential applications in the fields of environment monitoring, microbiology, food quality control, etc. Obtaining a tunable trapping or pushing ARF should enable the design of an incident beam profile. However, the conventional acoustic manipulation system with plane wave, standing waves or Gaussian beams, which is usually generated directly by acoustic transducer, cannot be redesigned easily, nor can the corresponding ARF be modulated efficiently. Phononic crystals, which are artificial periodic structure materials, exhibit great advantages in modulating the propagation and distribution of acoustic wave compared with conventional materials, and thus have potential applications in tunable particle manipulation. Here, we present a theoretical study of the ARFs exerted on a cylindrical polystyrene foam particle near the surface of a one-dimensional (1D) grating in air. By using the finite element method (FEM) to investigate the transmission spectra and field distribution of the 1D grating and the FEM combined with momentum-flux tensor to obtain the ARF on the particle, we find that there are two resonance modes in the 1D grating, which origin from the coupling between the diffractive waves excited from the export of periodic apertures and the Fabry-Perot resonance mode inside the apertures. In addition, it can be seen from field distribution that in the first resonant mode, the resonance wavelength is approximate to the period of grating, and the enhanced spatial confinement of acoustic wave is located at the surface of the plate besides in the aperture. In the second resonant mode, the corresponding wavelength is more than twice the period of grating, and the enhanced spatial confinement of acoustic wave is mainly located in the aperture. Moreover, due to the gradient field distribution at the surface of slits and plate in these resonance modes, particles at the surface can be under the action of tunable negative ARFs. In the first resonance mode, the particle can be trapped on the surface of grating. While in the second resonance mode, the particle can be trapped in the aperture, and the amplitude of ARF of this mode is far smaller than that of the first mode. Thus, this system in the first resonance mode may have potential applications in air acoustic manipulation, aligning, and sorting micro-particles.
-
Keywords:
- acoustic manipulation /
- acoustic radiation force /
- particle trapping /
- 1D grating
[1] Liu Y Y, Hu J H 2009 J. Appl. Phys. 106 034903
[2] Shi J J, Ahmed D, Mao X L, Lin S, Lawit A, Huang T J 2009 Lab Chip 9 2890
[3] Borgnis F E 1953 Rev. Mod. Phys. 25 653
[4] Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N 1993 J. Acoust. Soc. Am. 93 154
[5] Marzo A, Seah S A, W. Drinkwater B, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661
[6] Wang J W, Cheng Y, Liu X J 2014 Chin. Phys. B 23 054301
[7] Wang J W, Yuan B G, Cheng Y, Liu X J 2015 Sci. China:Phys. Mech. Astron. 58 024302
[8] Li Y, Liang B, Xu T, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508
[9] Li Y, Liang B, Zou X Y, Cheng J C 2012 Chin. Phys. Lett. 29 114301
[10] Liu Z Q, Zhang H, Zhang S Y, Fan L 2014 Appl. Phys. Lett. 105 053501
[11] Wang Y R, Zhang H, Zhang S Y, Fan L, Sun H X 2012 J. Acoust. Soc. Am. 131 EL150
[12] Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301
[13] Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731
[14] Wang T, Ke M Z, Xu S J, Feng J H, Qiu C Y, Liu Z Y 2015 Appl. Phys. Lett. 106 163504
[15] Wang T, Ke M Z, Qiu C Y, Liu Z Y 2016 J. Appl. Phys. 119 214502
[16] Qiu C Y, Xu S J, Ke M Z, Liu Z Y 2014 Phys. Rev. B 90 094109
[17] Lu S F, Zhang X, Wu F G, Yao Y W, Chen Z W 2016 J. Appl. Phys. 120 045102
[18] Cai F Y, He Z J, Liu Z Y, Meng L, Cheng X, Zheng H R 2011 Appl. Phys. Lett. 99 253505
[19] Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. Appl. 1 051001
[20] 20 He H L, Ouyang S L, He Z J, Deng K, Zhao H P 2015 J. Appl. Phys. 117 164504
[21] Feng R 1999 Ultrasonics Handbook (Danyang:Nanjing University Press) p128 (in Chinese)[冯若1999 超声手册 (丹阳:南京大学出版社) 第128页]
[22] Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301
[23] Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015
[24] Cai F Y, Meng L, Zheng H R 2010 J. Acoust. Soc. Am. 128 1617
[25] Xu S J, Qiu C Y, Liu Z Y 2012 Europhys. Lett. 99 44003
[26] Hahn P, Leibacher I, Baasch T, Dual J 2015 Lab Chip 15 4302
-
[1] Liu Y Y, Hu J H 2009 J. Appl. Phys. 106 034903
[2] Shi J J, Ahmed D, Mao X L, Lin S, Lawit A, Huang T J 2009 Lab Chip 9 2890
[3] Borgnis F E 1953 Rev. Mod. Phys. 25 653
[4] Hasegawa T, Hino Y, Annou A, Noda H, Kato M, Inoue N 1993 J. Acoust. Soc. Am. 93 154
[5] Marzo A, Seah S A, W. Drinkwater B, Sahoo D R, Long B, Subramanian S 2015 Nat. Commun. 6 8661
[6] Wang J W, Cheng Y, Liu X J 2014 Chin. Phys. B 23 054301
[7] Wang J W, Yuan B G, Cheng Y, Liu X J 2015 Sci. China:Phys. Mech. Astron. 58 024302
[8] Li Y, Liang B, Xu T, Zhu X F, Zou X Y, Cheng J C 2012 Appl. Phys. Lett. 101 233508
[9] Li Y, Liang B, Zou X Y, Cheng J C 2012 Chin. Phys. Lett. 29 114301
[10] Liu Z Q, Zhang H, Zhang S Y, Fan L 2014 Appl. Phys. Lett. 105 053501
[11] Wang Y R, Zhang H, Zhang S Y, Fan L, Sun H X 2012 J. Acoust. Soc. Am. 131 EL150
[12] Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301
[13] Zhu X F, Li K, Zhang P, Zhu J, Zhang J T, Tian C, Liu S C 2016 Nat. Commun. 7 11731
[14] Wang T, Ke M Z, Xu S J, Feng J H, Qiu C Y, Liu Z Y 2015 Appl. Phys. Lett. 106 163504
[15] Wang T, Ke M Z, Qiu C Y, Liu Z Y 2016 J. Appl. Phys. 119 214502
[16] Qiu C Y, Xu S J, Ke M Z, Liu Z Y 2014 Phys. Rev. B 90 094109
[17] Lu S F, Zhang X, Wu F G, Yao Y W, Chen Z W 2016 J. Appl. Phys. 120 045102
[18] Cai F Y, He Z J, Liu Z Y, Meng L, Cheng X, Zheng H R 2011 Appl. Phys. Lett. 99 253505
[19] Li F, Cai F Y, Liu Z Y, Meng L, Qian M, Wang C, Cheng Q, Qian M L, Liu X, Wu J R, Li J Y, Zheng H R 2014 Phys. Rev. Appl. 1 051001
[20] 20 He H L, Ouyang S L, He Z J, Deng K, Zhao H P 2015 J. Appl. Phys. 117 164504
[21] Feng R 1999 Ultrasonics Handbook (Danyang:Nanjing University Press) p128 (in Chinese)[冯若1999 超声手册 (丹阳:南京大学出版社) 第128页]
[22] Lu M H, Liu X K, Feng L, Li J, Huang C P, Chen Y F, Zhu Y Y, Zhu S N, Ming N B 2007 Phys. Rev. Lett. 99 174301
[23] Zhu X F, Liang B, Kan W W, Peng Y G, Cheng J C 2016 Phys. Rev. Appl. 5 054015
[24] Cai F Y, Meng L, Zheng H R 2010 J. Acoust. Soc. Am. 128 1617
[25] Xu S J, Qiu C Y, Liu Z Y 2012 Europhys. Lett. 99 44003
[26] Hahn P, Leibacher I, Baasch T, Dual J 2015 Lab Chip 15 4302
计量
- 文章访问数: 6178
- PDF下载量: 289
- 被引次数: 0