搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含三个忆阻器的六阶混沌电路研究

王伟 曾以成 孙睿婷

引用本文:
Citation:

含三个忆阻器的六阶混沌电路研究

王伟, 曾以成, 孙睿婷

Research on a six-order chaotic circuit with three memristors

Wang Wei, Zeng Yi-Cheng, Sun Rui-Ting
PDF
导出引用
  • 利用两个磁控忆阻器和一个荷控忆阻器设计了一个六阶混沌电路,并建立了相应电路状态变量的非线性动力学方程.研究了系统的基本动力学特性,平衡点及其稳定性分析表明:该电路具有一个位于忆阻器内部状态变量所构成三维平衡点集,平衡点的稳定性由电路参数和三个忆阻器的初始状态决定.分岔图、Lyapunov指数谱等表明该电路在参数变化情况下能产生Hopf分岔和反倍周期分岔两种分岔行为,以及超混沌、暂态混沌、阵发周期现象等多种复杂的非线性动力学行为.将观察混沌吸引子时关注的电压、电流信号推广到功率和能量信号,观察到了莲花型、叠加型吸引子等奇怪吸引子的产生.并研究了各忆阻器能量信号之间产生吸引子的情况,特别地,当取不同的初始值时,系统出现了共存混沌吸引子和周期极限环与混沌吸引子的共存现象.
    A memristor is a nonlinear nanoscale-sized element with memory function, and it has an italic type 8 voltage-current relation curve that looks like a pinched hysteresis loop characteristic. The memristor is utilized to construct chaotic circuit, which has attracted the attention of the researchers. At present, most of studies focus on applying one or two memristors to the chaotic circuit. In order to study the multi memristor chaotic circuit, in this work we propose a six-order chaotic circuit with two flux-controlled memristors and a charge-controlled memristor. A corresponding six-order nonlinear dynamic differential equation of the circuit state variables is established. The dynamic properties of the circuit are demonstrated in detail. The analyses of equilibria and equilibrium stability show that the circuit has an equilibrium located in the three-dimensional space which is constituted by memristor internal state variables, and it is found that the equilibrium stability is determined by the circuit parameters and the initial states of three memristors. The Lyapunov exponent spectra and bifurcation diagrams of the circuit imply that it can produce two bifurcation behaviors by adjusting its parameters, which are Hopf bifurcation and anti-period doubling bifurcation. The hyperchaos, transient chaos and intermittency cycle phenomena are found in the same system. The dynamical behavior of this circuit is dependent on the initial state of memristor, showing different orbits such as chaotic oscillation, periodic oscillation and stable sink under different initial states. Finally, the simulation results indicate that some strange attractors like lotus type and superposition type are observed when voltage and electricity signal in observing chaotic attractors are generalized to power and energy signal, respectively. And the attractor production between the energy signals of the memristors are studied. Specially, when different initial conditions of three memristors are used to simulate the circuit, we can find the coexistence phenomenon of chaotic attractors with different topological structures or quasi-periodic limit cycle and chaotic attractor. The six-order chaotic oscillating circuit is mainly composed of three parts:the parallel connection between a flux-controlled memristor and capacitor, the serial connection between a charge-controlled memristor and inductor, and another flux-controlled memristor that is alone and floating, which enriches the application of memristor in high-order chaotic circuit. Compared with most of other chaotic systems, it has many circuit parameters and very complex topological structure, which enhances the complexity of chaotic system and the randomness of the generated signal. It is more difficult to decipher the encrypted information in chaotic secure communication, and thus it has better security performance and safety performance.
      通信作者: 曾以成, yichengz@xtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:61471310)资助的课题.
      Corresponding author: Zeng Yi-Cheng, yichengz@xtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.61471310).
    [1]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [2]

    Tour J M, He T 2008 Nature 453 42

    [3]

    Chua L O 1971 IEEE Trans. Circ. Theory 18 507

    [4]

    Wu A L, Zeng Z G 2012 Neural Networks 36 1

    [5]

    Duan S K, Hu X F, Wang L D, Li C D 2012 Sci. China:Inf. Sci. 55 1446

    [6]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [7]

    Hong Q H, Li Z J, Zeng J F, Zeng Y C 2014 Acta Phys. Sin. 63 180502 (in Chinese)[洪庆辉, 李志军, 曾金芳, 曾以成2014 63 180502]

    [8]

    Chua L O 2011 Appl. Phys. A 102 765

    [9]

    Wang L, Yang C H, Wen J, Gai S 2015 J. Mater. Sci. 26 4618

    [10]

    Yuan F, Wang G Y, Wang X W 2016 Chaos 26 073107

    [11]

    Chua L O 2015 Radioengin 24 319

    [12]

    Lin Z, Wang H 2010 IETE Tech. Rev. 27 318

    [13]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese)[闵国旗, 王丽丹, 段书凯 2015 64 210507]

    [14]

    Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183

    [15]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [16]

    Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567

    [17]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [18]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

    [19]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [20]

    Bao B C, Shi G D, Xu J P, Pan S H 2011 Sci. China:Tech. Sci. 41 1135 (in Chinese)[包伯成, 史国栋, 许建平, 刘中, 潘赛虎 2011中国科学:技术科学 41 1135]

    [21]

    Buscarino A, Fortuna L, Frasca M, Valentina G L 2012 Int. J. Non. Sci. 22 023136

    [22]

    Hong Q H, Zeng Y C, Li Z J 2013 Acta Phys. Sin. 62 230502 (in Chinese)[洪庆辉, 曾以成, 李志军 2013 62 230502]

    [23]

    Benhabib J, Nishimura K 1979 J. Econ. Theory 21 421

    [24]

    Bao B C, Xu J P, Liu Z 2010 Chin. Phys. Lett. 27 070504

  • [1]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [2]

    Tour J M, He T 2008 Nature 453 42

    [3]

    Chua L O 1971 IEEE Trans. Circ. Theory 18 507

    [4]

    Wu A L, Zeng Z G 2012 Neural Networks 36 1

    [5]

    Duan S K, Hu X F, Wang L D, Li C D 2012 Sci. China:Inf. Sci. 55 1446

    [6]

    Li Q D, Zeng H Z, Li J 2015 Nonlinear Dyn. 79 2295

    [7]

    Hong Q H, Li Z J, Zeng J F, Zeng Y C 2014 Acta Phys. Sin. 63 180502 (in Chinese)[洪庆辉, 李志军, 曾金芳, 曾以成2014 63 180502]

    [8]

    Chua L O 2011 Appl. Phys. A 102 765

    [9]

    Wang L, Yang C H, Wen J, Gai S 2015 J. Mater. Sci. 26 4618

    [10]

    Yuan F, Wang G Y, Wang X W 2016 Chaos 26 073107

    [11]

    Chua L O 2015 Radioengin 24 319

    [12]

    Lin Z, Wang H 2010 IETE Tech. Rev. 27 318

    [13]

    Min G Q, Wang L D, Duan S K 2015 Acta Phys. Sin. 64 210507 (in Chinese)[闵国旗, 王丽丹, 段书凯 2015 64 210507]

    [14]

    Itoh M, Chua L O 2008 Int. J. Bifurc. Chaos 18 3183

    [15]

    Muthuswamy B, Kokate P P 2009 IETE Tech. Rev. 26 417

    [16]

    Muthuswamy B, Chua L O 2010 Int. J. Bifurc. Chaos 20 1567

    [17]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [18]

    Li Z J, Zeng Y C 2013 Chin. Phys. B 22 040502

    [19]

    Bao B C, Hu F W, Liu Z, Xu J P 2014 Chin. Phys. B 23 070503

    [20]

    Bao B C, Shi G D, Xu J P, Pan S H 2011 Sci. China:Tech. Sci. 41 1135 (in Chinese)[包伯成, 史国栋, 许建平, 刘中, 潘赛虎 2011中国科学:技术科学 41 1135]

    [21]

    Buscarino A, Fortuna L, Frasca M, Valentina G L 2012 Int. J. Non. Sci. 22 023136

    [22]

    Hong Q H, Zeng Y C, Li Z J 2013 Acta Phys. Sin. 62 230502 (in Chinese)[洪庆辉, 曾以成, 李志军 2013 62 230502]

    [23]

    Benhabib J, Nishimura K 1979 J. Econ. Theory 21 421

    [24]

    Bao B C, Xu J P, Liu Z 2010 Chin. Phys. Lett. 27 070504

  • [1] 吴朝俊, 方礼熠, 杨宁宁. 含有偏置电压源的非齐次分数阶忆阻混沌电路动力学分析与实验研究.  , 2024, 73(1): 010501. doi: 10.7498/aps.73.20231211
    [2] 郭慧朦, 梁燕, 董玉姣, 王光义. 蔡氏结型忆阻器的简化及其神经元电路的硬件实现.  , 2023, 72(7): 070501. doi: 10.7498/aps.72.20222013
    [3] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用.  , 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [4] 肖利全, 段书凯, 王丽丹. 基于Julia分形的多涡卷忆阻混沌系统.  , 2018, 67(9): 090502. doi: 10.7498/aps.67.20172761
    [5] 闫登卫, 王丽丹, 段书凯. 基于忆阻器的多涡卷混沌系统及其脉冲同步控制.  , 2018, 67(11): 110502. doi: 10.7498/aps.67.20180025
    [6] 吴全潭, 时拓, 赵晓龙, 张续猛, 伍法才, 曹荣荣, 龙世兵, 吕杭炳, 刘琦, 刘明. 基于六角氮化硼二维薄膜的忆阻器.  , 2017, 66(21): 217304. doi: 10.7498/aps.66.217304
    [7] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器.  , 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [8] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现.  , 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [9] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性.  , 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [10] 李志军, 曾以成, 谭志平. 一个通用的记忆器件模拟器.  , 2014, 63(9): 098501. doi: 10.7498/aps.63.098501
    [11] 洪庆辉, 李志军, 曾金芳, 曾以成. 基于电流反馈运算放大器的忆阻混沌电路设计与仿真.  , 2014, 63(18): 180502. doi: 10.7498/aps.63.180502
    [12] 杨芳艳, 冷家丽, 李清都. 基于Chua电路的四维超混沌忆阻电路.  , 2014, 63(8): 080502. doi: 10.7498/aps.63.080502
    [13] 包伯成, 王春丽, 武花干, 乔晓华. 忆阻电路降维建模与特性分析.  , 2014, 63(2): 020504. doi: 10.7498/aps.63.020504
    [14] 何圣仲, 周国华, 许建平, 吴松荣, 陈利. 输出电容时间常数对V2控制Buck变换器的动力学特性的影响.  , 2014, 63(13): 130501. doi: 10.7498/aps.63.130501
    [15] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路.  , 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [16] 梁燕, 于东升, 陈昊. 基于模拟电路的新型忆感器等效模型.  , 2013, 62(15): 158501. doi: 10.7498/aps.62.158501
    [17] 许碧荣. 一种最简的并行忆阻器混沌系统.  , 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [18] 秦卫阳, 孙涛, 焦旭东, 杨永锋. 一类动力学系统通过函数耦合实现混沌同步.  , 2012, 61(9): 090502. doi: 10.7498/aps.61.090502
    [19] 陈军, 李春光. 禁忌学习神经元模型的电路设计及其动力学研究.  , 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [20] 包伯成, 胡文, 许建平, 刘中, 邹凌. 忆阻混沌电路的分析与实现.  , 2011, 60(12): 120502. doi: 10.7498/aps.60.120502
计量
  • 文章访问数:  6892
  • PDF下载量:  554
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-08-26
  • 修回日期:  2016-11-23
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map