搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析

李少东 陈永彬 刘润华 马晓岩

引用本文:
Citation:

基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析

李少东, 陈永彬, 刘润华, 马晓岩

Analysis on the compressive sensing based narrow-band radar super resolution imaging mechanism of rapidly spinning targets

Li Shao-Dong, Chen Yong-Bin, Liu Run-Hua, Ma Xiao-Yan
PDF
导出引用
  • 常规窄带雷达系统对高速自旋的空天目标成像时,方位脉冲重复频率通常难以满足采样率要求.而基于压缩感知(compressive sensing,CS)理论则可实现欠采样条件下窄带高速自旋目标的成像.本文对这一成像的物理机理进行分析和讨论.首先,构建方位欠采样回波模型,分析了该模型与CS理论的关系;其次,从物理角度分析基于CS理论可以保证欠采样条件下散射点准确重构的机理,给出欠采样倍数的理论下限值.仿真结果表明,欠采样条件下窄带雷达系统可实现对高速自旋目标二维成像,同时验证了基于CS的欠采样成像性能与欠采样倍数、等效强散射点个数以及波长等有关,与信号带宽无关等结论.
    According to the characteristics of spinning targets, the narrow-band radar echoes can be directly used for imaging spinning targets. However, spurious peaks appear due to azimuth down sampling with a low pulse repetition frequency (PRF). By exploiting the sparsity of the targets, the compressed sensing (CS) theory can be adopted to obtain super resolution image under sub-sampling condition. This paper mainly focuses on analyzing the physical mechanism of the CS-based narrow-band imaging method. Firstly, the narrow-band radar's under-sampling echoes' model from rapidly spinning targets is established. The relationship between CS and the model is analyzed. Then the reasons why the CS-based narrow-band imaging method can guarantee the exact recovery of the spinning target are given from physical view. The theoretical lower limit of sub-sampling pulse numbers is provided. Finally, the simulation results verify the effectiveness of the theoretical analysis. The main results obtained in the paper are listed as follows. One is that the mechanism of the CS-based narrow-band imaging method differs from those of the conventional range Doppler imaging methods. The spurious peaks appear due to calculating the Doppler frequency directly under a low PRF. To avoid this phenomenon, the CS-based method searches the positions of the scatterers instead. The variation from calculating the Doppler frequency directly to searching the positions of the scatterers is the physical mechanism of the CS-based super resolution imaging method. The other is that the resolution and the allowable grid mismatch of the CS-based imaging method are related to the wavelength, which is 0.4 and unrelated to the bandwidth. So the performance of the CS-based imaging method is related to the sub-sampling rate, the number of the scatters and the wavelength, and unrelated to the bandwidth of the wave. However, this paper only considers the ideal point scattering model and the grid is perfectly matched with the model. In the following, three aspects can be further studied. First, due to the spinning target distribution on a continuous scene, the off-grid problem would severely affect the performance of the CS-based imaging method. The continuous compressive sensing theory can be used for solving the off-grid problem and explaining the related physical mechanism. Second, the illumination of the radar cannot reach some scatterers on the target in some observation intervals, which results in the occlusion effect and the time-varying scattering amplitude. The dynamic CS theory can be used for reference in solving this problem. Finally, if the estimated spinning frequency has error, how to correct and compensate for the error adaptively needs to be further studied.
      通信作者: 李少东, liying198798@126.com
    • 基金项目: 国家自然科学基金(批准号:61671469)资助的课题.
      Corresponding author: Li Shao-Dong, liying198798@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61671469).
    [1]

    Wang T, Tong C M, Li X M, Li C Z 2015 Acta Phys. Sin. 64 210301 (in Chinese)[王童, 童创明, 李西敏, 李昌泽2015 64 210301]

    [2]

    Ai X F, Huang Y, Zhao F, Yang J H, Li Y Z, Xiao S P 2013 IEEE Geosci. Remote Sens. Lett. 10 362

    [3]

    Sato T 1999 IEEE Trans. Geosci. Remote Sens. 37 1000

    [4]

    Bai X R, Sun G C, Wu Q S, Xing M D, Bao Z 2010 Sci. China:Inform. Sci. 40 1508(in Chinese)[白雪茹, 孙光才, 武其松, 邢孟道, 保铮2010中国科学:信息科学401508]

    [5]

    Bai X R, Zhou F, Xing M D, Bao Z 2011 Trans. Aerosp. Electron. Syst. 47 2530

    [6]

    Wang B P, Fang Y, Sun C, Tan X 2015 J. Remote Sensing 2 254 (in Chinese)[王保平, 方阳, 孙超, 谭歆2015遥感学报2 254]

    [7]

    Zhu J, Liao G S, Zhu S Q 2015 J. Electron. Inform. Technol. 37 587 (in Chinese)[朱江, 廖桂生, 朱圣棋2015电子与信息学报37 587]

    [8]

    Bao Z, Xing M D, Wang T 2006 Radar Imaging Technique (Beijing:Publishing House of Electronics Industry) p24(in Chinese)[保铮, 邢孟道, 王彤2006雷达成像技术(北京:电子工业出版社)第24页]

    [9]

    Zhang W P, Li K L, Jiang W D 2015 IEEE Sig. Proc. Lett. 22 633

    [10]

    Hu J M, Fu Y W, Hu Z G, Li X 2009 J. Electron. Inform. Technol. 31 2069 (in Chinese)[胡杰民, 付耀文, 胡志刚, 黎湘2009电子与信息学报31 2069]

    [11]

    Bai X R 2011 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[白雪茹2011博士学位论文(西安:西安电子科技大学)]

    [12]

    Chi Y J, Scharf L L, Pezeshki A, Calderbank R A 2011 IEEE Trans. Sig. Proc. 59 2182

    [13]

    Zhang L 2012 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[张磊2012博士学位论文(西安:西安电子科技大学)]

    [14]

    Applebauma L, Howard S D, Searle S, Calderbank R 2009 Appl. Comput. Harmon. Anal. 26 283

    [15]

    Yang Z, Xie L H 2014 arXiv:14072490v1

    [16]

    Jing N, Bi W H, Hu Z P, Wang L 2015 Acta Automat. Sin. 41 22 (in Chinese)[荆楠, 毕卫红, 胡正平, 王林2015自动化学报41 22]

  • [1]

    Wang T, Tong C M, Li X M, Li C Z 2015 Acta Phys. Sin. 64 210301 (in Chinese)[王童, 童创明, 李西敏, 李昌泽2015 64 210301]

    [2]

    Ai X F, Huang Y, Zhao F, Yang J H, Li Y Z, Xiao S P 2013 IEEE Geosci. Remote Sens. Lett. 10 362

    [3]

    Sato T 1999 IEEE Trans. Geosci. Remote Sens. 37 1000

    [4]

    Bai X R, Sun G C, Wu Q S, Xing M D, Bao Z 2010 Sci. China:Inform. Sci. 40 1508(in Chinese)[白雪茹, 孙光才, 武其松, 邢孟道, 保铮2010中国科学:信息科学401508]

    [5]

    Bai X R, Zhou F, Xing M D, Bao Z 2011 Trans. Aerosp. Electron. Syst. 47 2530

    [6]

    Wang B P, Fang Y, Sun C, Tan X 2015 J. Remote Sensing 2 254 (in Chinese)[王保平, 方阳, 孙超, 谭歆2015遥感学报2 254]

    [7]

    Zhu J, Liao G S, Zhu S Q 2015 J. Electron. Inform. Technol. 37 587 (in Chinese)[朱江, 廖桂生, 朱圣棋2015电子与信息学报37 587]

    [8]

    Bao Z, Xing M D, Wang T 2006 Radar Imaging Technique (Beijing:Publishing House of Electronics Industry) p24(in Chinese)[保铮, 邢孟道, 王彤2006雷达成像技术(北京:电子工业出版社)第24页]

    [9]

    Zhang W P, Li K L, Jiang W D 2015 IEEE Sig. Proc. Lett. 22 633

    [10]

    Hu J M, Fu Y W, Hu Z G, Li X 2009 J. Electron. Inform. Technol. 31 2069 (in Chinese)[胡杰民, 付耀文, 胡志刚, 黎湘2009电子与信息学报31 2069]

    [11]

    Bai X R 2011 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[白雪茹2011博士学位论文(西安:西安电子科技大学)]

    [12]

    Chi Y J, Scharf L L, Pezeshki A, Calderbank R A 2011 IEEE Trans. Sig. Proc. 59 2182

    [13]

    Zhang L 2012 Ph. D. Dissertation (Xi'an:Xidian University) (in Chinese)[张磊2012博士学位论文(西安:西安电子科技大学)]

    [14]

    Applebauma L, Howard S D, Searle S, Calderbank R 2009 Appl. Comput. Harmon. Anal. 26 283

    [15]

    Yang Z, Xie L H 2014 arXiv:14072490v1

    [16]

    Jing N, Bi W H, Hu Z P, Wang L 2015 Acta Automat. Sin. 41 22 (in Chinese)[荆楠, 毕卫红, 胡正平, 王林2015自动化学报41 22]

  • [1] 王攀, 王仲根, 孙玉发, 聂文艳. 新型压缩感知计算模型分析三维电大目标电磁散射特性.  , 2023, 72(3): 030202. doi: 10.7498/aps.72.20221532
    [2] 丁亚辉, 孙玉发, 朱金玉. 一种基于压缩感知的三维导体目标电磁散射问题的快速求解方法.  , 2018, 67(10): 100201. doi: 10.7498/aps.67.20172543
    [3] 范启蒙, 尹成友. 高对比度目标的电磁逆散射超分辨成像.  , 2018, 67(14): 144101. doi: 10.7498/aps.67.20180266
    [4] 赵光远, 郑程, 方月, 匡翠方, 刘旭. 基于点扫描的超分辨显微成像进展.  , 2017, 66(14): 148702. doi: 10.7498/aps.66.148702
    [5] 王盼盼, 姚旭日, 刘雪峰, 俞文凯, 邱棚, 翟光杰. 基于行扫描测量的运动目标压缩成像.  , 2017, 66(1): 014201. doi: 10.7498/aps.66.014201
    [6] 黄翔东, 刘明卓, 杨琳, 刘琨, 刘铁根. 单次空时域并行欠采样下的频率和到达角联合估计.  , 2017, 66(18): 188401. doi: 10.7498/aps.66.188401
    [7] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法.  , 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [8] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像.  , 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] 李少东, 陈文峰, 杨军, 马晓岩. 低信噪比下的二维联合线性布雷格曼迭代快速超分辨成像算法.  , 2016, 65(3): 038401. doi: 10.7498/aps.65.038401
    [10] 李广明, 吕善翔. 混沌信号的压缩感知去噪.  , 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] 陈鹏, 孟晨, 孙连峰, 王成, 杨森. 基于指数再生窗Gabor框架的窄脉冲欠Nyquist采样与重构.  , 2015, 64(7): 070701. doi: 10.7498/aps.64.070701
    [12] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法.  , 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [13] 王哲, 王秉中. 压缩感知理论在矩量法中的应用.  , 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [14] 黄翔东, 丁道贤, 南楠, 王兆华. 基于中国余数定理的欠采样下余弦信号的频率估计.  , 2014, 63(19): 198403. doi: 10.7498/aps.63.198403
    [15] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析.  , 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [16] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像.  , 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [17] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究.  , 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [18] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法.  , 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [19] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究.  , 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
    [20] 梁国龙, 马巍, 范展, 王逸林. 矢量声纳高速运动目标稳健高分辨方位估计.  , 2013, 62(14): 144302. doi: 10.7498/aps.62.144302
计量
  • 文章访问数:  6677
  • PDF下载量:  259
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-05-13
  • 修回日期:  2016-08-25
  • 刊出日期:  2017-02-05

/

返回文章
返回
Baidu
map