搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于椭圆腔共振的石英增强光声光谱理论研究

赵彦东 方勇华 李扬裕 吴军 李大成 崔方晓 刘家祥 王安静

引用本文:
Citation:

基于椭圆腔共振的石英增强光声光谱理论研究

赵彦东, 方勇华, 李扬裕, 吴军, 李大成, 崔方晓, 刘家祥, 王安静

Theoretical research on quartz enhanced photoacoustic spectroscopy base on the resonance in an elliptical cavity

Zhao Yan-Dong, Fang Yong-Hua, Li Yang-Yu, Wu Jun, Li Da-Cheng, Cui Fang-Xiao, Liu Jia-Xiang, Wang An-Jing
PDF
导出引用
  • 石英增强光声光谱技术作为一种新型的光学检测技术,已被广泛应用于痕量气体检测场合.其中声波共振增强性能是决定检测灵敏度的重要因素.为提高光声光谱检测系统的信噪比和检测极限,提出一种新型的椭圆腔共振石英增强光声光谱检测方法,建立了其声学特征模型并利用有限元分析方法对光声腔内部声学特性进行仿真研究.研究结果表明,椭圆腔的特征模态在(2,1)模态下长轴两端声压达到最大值.通过对椭圆腔的尺寸和形状进行优化,建立实验装置,得到目标气体硫化氢检测极限为6.3 ppm(parts per million),相应的归一化噪声等效吸收系数为2.0210-9cm-1W/Hz1/2.
    As a new optical detection technique,quartz enhanced photoacoustic spectroscopy (QEPAS) has been widely used in the field of trace gas detection,which has an outstanding performance because of its advantages of extremely high sensitivity,high selectivity and compact absorption detection module.The most important factor of the detection sensitivity for QEPAS sensor is the acoustic wave enhancement.For increasing the acoustic enhancement,great effort has been devoted to the investigations by increasing laser power,employing tube resonators and using custom-made acoustic transducers.However,less attention has been paid to the elliptical cavity enhancement photoacoustic spectroscopy.In this work,novel quartz enhanced photoacoustic spectroscopy based on an elliptical cavity is proposed,which employs two quartz tuning forks and an elliptical cavity to further enhance the acoustic wave.The analysis and optimization of the elliptical cavity are also demonstrated. For the elliptical cavity QEPAS sensor,the acoustic enhancement properties can be influenced by resonant modes, coupling between laser and acoustic wave,and dimension of the cavity.Based on the Helmholtz wave equation,the acoustic modes and corresponding resonance frequency can be quantized.To further investigate the acoustic wave resonance inside the cavity,the model of the cavity is established in Comsol Multiphysics software with finite element method.The acoustic pressure,quality factor can be obtained numerically by the software.With the model,parameters of the spectrophone are investigated,including the resonant modes,laser incidence angle and dimension of the elliptical cavity.As a result,the (2,1) resonant mode is selected as the enhancement mode in the cavity,in which the maximum acoustic pressure is achieved at the ends of the long axis.By changing the incidence angle of the laser beam from 0 to 90,the performance of the sensor is analyzed,which indicates that the laser incidence angle has little influence on acoustic properties except for 30.This is due to the interaction of other resonant modes at this incidence angle.With the length of half-long axis varying from 4.8 mm to 5.2 mm,eccentricity from 0.5 to 0.8 and the cavity height from 0.4 mm to 0.8 mm,the resonance frequency,acoustic pressure and quality factor are studied.It reveals that there is an optimal length of half-long axis for a fixed eccentricity,and a relative large height is beneficial to enhancing the acoustic pressure.On the whole,a set of parameters is identified for the optimal sensor performance. By optimizing and designing the spectrophone,the experiment is conducted,in which a laser (1578 nm) and H2S as the sample gas are used.The detection limit of H2S gas of 6.3 ppm is achieved and the corresponding Normalized noise equivalent absorption coefficient (NNEA) is 2.0210-9cm-1W/Hz1/2.Finally,several H2S detection results of other QEPAS methods are listed and compared for demonstrating the high detection sensitivity of the sensor.This work may contribute to the research of high sensitivity photoacoustic detection.
      通信作者: 方勇华, yhfang@aiofm.ac.cn
    • 基金项目: 安徽省自然科学基金(批准号:1608085QD80)资助的课题.
      Corresponding author: Fang Yong-Hua, yhfang@aiofm.ac.cn
    • Funds: Project supported by the Natural Science Foundation of Anhui Province, China (Grant No. 1608085QD80).
    [1]

    Schilt S, Kosterev A A, Tittel F K 2009 Appl. Phys. B 95 813

    [2]

    Spagnolo V, Kosterev A A, Dong L, Lewicki R, Tittel F K 2010 Appl. Phys. B 100 125

    [3]

    Liu K, Li J, Wang L, Tan T, Zhang W, Gao X, Chen W, Tittel F K 2009 Appl. Phys. B 94 527

    [4]

    Köhring M, Pohlkötter A, Willer U, Angelmahr M, Schade W 2011 Appl. Phys. B 102 133

    [5]

    Dong L, Spagnolo V, Lewicki R, Tittel F K 2011 Opt. Express 19 24037

    [6]

    Kosterev A A, Tittel F K, Serebryakov D, Malinovsky A L, Morozov I 2005 Rev. Sci. Instrum. 76 043105

    [7]

    Spagnolo V, Patimisco P, Borri S, Scamarcio G, Bernacki B E, Kriesel J 2013 Appl. Phys. B 112 25

    [8]

    Elia A, Lugarà P M, Di F C, Spagnolo V 2009 Sensors 9 9619

    [9]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [10]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [11]

    Mordmller M, Köhring M, Schade W, Willer U 2015 Appl. Phys. B 119 111

    [12]

    Dong L, Wu H, Zheng H, Liu Y, Liu X, Jiang W, Zhang L, Ma W, Ren W, Yin W, Jia S, Tittel F K 2014 Opt. Lett. 39 2479

    [13]

    Patimisco P, Scamarcio G, Tittel F K, Spagnolo V 2014 Sensors 14 6165

    [14]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [15]

    Liu K, Guo X, Yi H, Chen W, Zhang W X Gao 2009 Opt. Lett. 34 1594

    [16]

    Miklós A, Hess P, Bozóki Z 2001 Rev. Sci. Instrum. 72 1937

    [17]

    Hong K, Kim J 1995 J. Sound. Vib. 183 327

    [18]

    Lee W M 2011 J. Sound. Vib. 330 4915

    [19]

    Serebryakov D V, Morozov I V, Kosterev A A, Letokhov V S 2010 Quantum. Electron 40 167

    [20]

    Wu H, Dong L, Zheng H, Liu X, Yin X, Ma W, Zhang L, Yin W, Jia S, Tittel F K 2015 Sens. Actuators B: Chem. 221 666

    [21]

    Kosterev A A, Dong L, Thomazy D, Tittel F K, Overby S 2010 Appl. Phys. B 101 649

    [22]

    Siciliani d C M, Viciani S, Borri S, Patimisco P, Sampaolo A, Scamarcio G, Natale P D, Amato F D, Spagnolo V 2014 Opt. Express 22 28222

    [23]

    Spagnolo V, Patimisco P, Pennetta R, Sampaolo A, Scamarcio G, Vitiello M S, Tittel F K 2015 Opt. Express 23 7574

  • [1]

    Schilt S, Kosterev A A, Tittel F K 2009 Appl. Phys. B 95 813

    [2]

    Spagnolo V, Kosterev A A, Dong L, Lewicki R, Tittel F K 2010 Appl. Phys. B 100 125

    [3]

    Liu K, Li J, Wang L, Tan T, Zhang W, Gao X, Chen W, Tittel F K 2009 Appl. Phys. B 94 527

    [4]

    Köhring M, Pohlkötter A, Willer U, Angelmahr M, Schade W 2011 Appl. Phys. B 102 133

    [5]

    Dong L, Spagnolo V, Lewicki R, Tittel F K 2011 Opt. Express 19 24037

    [6]

    Kosterev A A, Tittel F K, Serebryakov D, Malinovsky A L, Morozov I 2005 Rev. Sci. Instrum. 76 043105

    [7]

    Spagnolo V, Patimisco P, Borri S, Scamarcio G, Bernacki B E, Kriesel J 2013 Appl. Phys. B 112 25

    [8]

    Elia A, Lugarà P M, Di F C, Spagnolo V 2009 Sensors 9 9619

    [9]

    Kosterev A A, Bakhirkin Y A, Curl R F, Tittel F K 2002 Opt. Lett. 27 1902

    [10]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594

    [11]

    Mordmller M, Köhring M, Schade W, Willer U 2015 Appl. Phys. B 119 111

    [12]

    Dong L, Wu H, Zheng H, Liu Y, Liu X, Jiang W, Zhang L, Ma W, Ren W, Yin W, Jia S, Tittel F K 2014 Opt. Lett. 39 2479

    [13]

    Patimisco P, Scamarcio G, Tittel F K, Spagnolo V 2014 Sensors 14 6165

    [14]

    Dong L, Kosterev A A, Thomazy D, Tittel F K 2010 Appl. Phys. B 100 627

    [15]

    Liu K, Guo X, Yi H, Chen W, Zhang W X Gao 2009 Opt. Lett. 34 1594

    [16]

    Miklós A, Hess P, Bozóki Z 2001 Rev. Sci. Instrum. 72 1937

    [17]

    Hong K, Kim J 1995 J. Sound. Vib. 183 327

    [18]

    Lee W M 2011 J. Sound. Vib. 330 4915

    [19]

    Serebryakov D V, Morozov I V, Kosterev A A, Letokhov V S 2010 Quantum. Electron 40 167

    [20]

    Wu H, Dong L, Zheng H, Liu X, Yin X, Ma W, Zhang L, Yin W, Jia S, Tittel F K 2015 Sens. Actuators B: Chem. 221 666

    [21]

    Kosterev A A, Dong L, Thomazy D, Tittel F K, Overby S 2010 Appl. Phys. B 101 649

    [22]

    Siciliani d C M, Viciani S, Borri S, Patimisco P, Sampaolo A, Scamarcio G, Natale P D, Amato F D, Spagnolo V 2014 Opt. Express 22 28222

    [23]

    Spagnolo V, Patimisco P, Pennetta R, Sampaolo A, Scamarcio G, Vitiello M S, Tittel F K 2015 Opt. Express 23 7574

  • [1] 何兆阳, 雷波, 杨益新. 源致内波引起的声场扰动及其检测方法.  , 2023, 72(14): 144301. doi: 10.7498/aps.72.20230346
    [2] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测.  , 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [3] 刘建鑫, 赵刚, 周月婷, 周晓彬, 马维光. 高反射腔镜双折射效应对腔增强光谱技术的影响.  , 2022, 71(8): 084202. doi: 10.7498/aps.71.20212090
    [4] 徐超, 丁继军, 陈海霞, 李国利. Ag纳米线四聚体中的局域表面等离子体共振腔模态变化.  , 2021, 70(23): 235201. doi: 10.7498/aps.70.20211230
    [5] 王浩然, 蓝君, 陈佳惠, 李义丰. 基于多腔型超构材料的声场增强效应.  , 2021, 70(15): 154301. doi: 10.7498/aps.70.20202172
    [6] 卞晓鸽, 周胜, 张磊, 何天博, 李劲松. 基于标准样品回归算法和腔增强光谱的NO2检测方法.  , 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [7] 马欲飞. 基于石英增强光声光谱的气体传感技术研究进展.  , 2021, 70(16): 160702. doi: 10.7498/aps.70.20210685
    [8] 孔德智, 孙超, 李明杨. 浅海环境中基于模态衰减规律加权的子空间检测方法.  , 2020, 69(16): 164301. doi: 10.7498/aps.69.20191948
    [9] 程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明. 光声光谱检测装置中光声池的数值计算及优化.  , 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [10] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别.  , 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [11] 刘昱, 任国斌, 靳文星, 吴越, 杨宇光, 简水生. 基于模场自积增强检测的光纤声光旋转传感器.  , 2018, 67(1): 014208. doi: 10.7498/aps.67.20171525
    [12] 贾梦源, 赵刚, 周月婷, 刘建鑫, 郭松杰, 吴永前, 马维光, 张雷, 董磊, 尹王保, 肖连团, 贾锁堂. 基于噪声免疫腔增强光外差分子光谱技术实现光纤激光器到1530.58 nm NH3亚多普勒饱和光谱的频率锁定.  , 2018, 67(10): 104207. doi: 10.7498/aps.67.20172541
    [13] 何应, 马欲飞, 佟瑶, 彭振芳, 于欣. 光纤倏逝波型石英增强光声光谱技术.  , 2018, 67(2): 020701. doi: 10.7498/aps.67.20171881
    [14] 马欲飞, 何应, 于欣, 于光, 张静波, 孙锐. 基于中红外量子级联激光器和石英增强光声光谱的CO超高灵敏度检测研究.  , 2016, 65(6): 060701. doi: 10.7498/aps.65.060701
    [15] 尹旭坤, 郑华丹, 董磊, 武红鹏, 刘小利, 马维光, 张雷, 尹王保, 贾锁堂. 基于电学调制相消法和高功率蓝光LD的离轴石英增强光声光谱NO2传感器设计和优化.  , 2015, 64(13): 130701. doi: 10.7498/aps.64.130701
    [16] 李明杨, 孙超, 邵炫. 模态信息非完备采样对水下声源检测的影响及改进方法.  , 2014, 63(20): 204302. doi: 10.7498/aps.63.204302
    [17] 聂永发, 朱海潮. 利用源强密度声辐射模态重建声场.  , 2014, 63(10): 104303. doi: 10.7498/aps.63.104303
    [18] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱.  , 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [19] 武红鹏, 董磊, 郑华丹, 刘研研, 马维光, 张雷, 王五一, 朱庆科, 尹王保, 贾锁堂. 基于微型非共振腔的石英增强光声光谱用于氦气纯度分析的实验研究.  , 2013, 62(7): 070701. doi: 10.7498/aps.62.070701
    [20] 韩海年, 张金伟, 张青, 张龙, 魏志义. 飞秒激光共振增强腔的理论与实验研究.  , 2012, 61(16): 164206. doi: 10.7498/aps.61.164206
计量
  • 文章访问数:  6054
  • PDF下载量:  375
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-27
  • 修回日期:  2016-06-17
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map