-
中、远红外光学领域的发展, 离不开低损耗光波导材料的发展, 因此近年来远红外低损耗光纤一直是光学领域的热点之一. 本论文在国内首次报道了一种基于挤压法的低损耗远红外光纤制备技术, 获得了具有完整结构的远红外光纤, 其损耗为: 0.46 dB/m @8.7 m, 1.31 dB/m@10.6 m, 整体低于1 dB/m@7.2-10.3 m. 在实验过程中, 首先采用传统的熔融淬冷法和蒸馏纯化工艺制备了Ge-As-Se-Te玻璃样品. 利用X射线衍射仪和热膨胀仪等测试了玻璃的结构和物理性质, 分析了Ge对玻璃热学性质的影响; 利用分光光度计、红外光谱仪等研究了玻璃的光谱性质; 综合比较了还原剂铝、镁的除氧效果. 最后采用挤压法制备了芯包结构光纤. 实验结果表明: 镁的除氧效果佳, 新型挤压制备工艺和有效提纯技术共同推进了硫系光纤损耗的降低, 所获得的 Ge-As-Se-Te光纤具有远红外广谱应用的潜能(其透光波长接近12 m).With the development of infrared optics, low-loss waveguide materials are required. Especially, low-loss optical fiber development for far-infrared application has become a focus. Chalcogenide Ge-As-Se-Te(GAST) glasses and fibers for far-infrared light are prepared and investigated in this paper. The thermal properties and the infrared transmissions are reported. The influences of oxygen and hydrogen on the glass transmission and fiber attenuation are discussed. Low-loss GAST fiber with a structure of fine core/cladding is reported by a novel extrusion method (0.46 dB/m at 8.7 m, 1.31 dB/m at 10.6 m, base loss being under 1 dB/m from 7.2 to 10.3 m). Here, the glasses are prepared by traditional vacuum melt-quenching and vapor distillation method. Structure and physical properties of GAST glass system are studied with X ray diffractions and thermal expansion instrument. Optical spectra of GAST glass system are obtained by spectrophotometer and infrared spectrometer. Main purification processes with different oxygen-getters (magnesium and aluminum) are disclosed. The fiber attenuation is measured by the cut-back method with an Fourier transform infrared spectroscopy spectrometer. The lowest loss of this fiber can be reduced to 1.32 dB/m at 10.6 m, as it has a structure of Ge20As20Se15Te45 core and Ge20As20Se17Te43 cladding. The results show that these glasses are well transparent in a wide infrared window from 1.1 to 22 m, and these glass fibers can transmit far-infrared light up to 12 m, thus the GAST glass system is one of good candidates for far-infrared transparent materials. The fiber attenuation can be reduced effectively by the reasonable purification and novel extruded-processing. These fibers are suited for the power delivery of CO2 laser.
-
Keywords:
- GeAsSeTe /
- chalcogenide glass /
- far-infrared /
- low-loss
[1] Schliesser A, Picque N, Haensch T W 2012 Nat. Photonics 6 440
[2] Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547
[3] Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 351 (in Chinese) [孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰 2011 60 351]
[4] Song R, Lei C M, Chen S P, Wang Z F, Hou J 2015 Chin. Phys. B 24 351
[5] Nie Q H, Wang G X, Wang X S, Dai S X, Deng S W, Xu T F, Shen X 2010 Opt. Commun. 283 4004
[6] Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C, Ma H L 2012 Spectrochim. Acta Part A 86 586
[7] Xu H J, He Y J, Wang X S, Nie Q H, Zhang P Q, Xu T F, Dai S X, Zhang X H, Tao G M 2014 Infrared Phys. Technol. 65 77
[8] Cheng C, Wang X S, Xu T F, Sun L H, Zhu Q D, Pan Z H, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Shen X, Zhang X H 2015 Infrared Phys. Technol. 72 148
[9] Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 241
[10] Tikhomirov V K, Furniss D, Seddon A B, Savage J A, Mason P D, Orchard D A, Lewis K L 2004 Infrared Phys. Technol. 45 115
[11] Inagawa I, Iizuka R, Yamagishi T, Yokota R 1987 J. Non-Cryst. Solids 9596 801
[12] Savage J A, Webber P J, Pitt A M 1980 Infrared Phys. Technol. 20 313
[13] Katsuyama T, Matsumura H 1986 Appl. Phys. Lett. 49 22
[14] Flank A M, Bazin D, Dexpert H, Lagarde P, Hervo C, Barraud J Y 1987 J. Non-Cryst. Solids 91 306
[15] Sanghera J S, Nguyen V Q, Pureza P C, Kung F H, Miklos R, Aggarwal I D 1994 J. Lightwave Technol. 12 737
[16] Nishii J, Yamashita T, Yamagishi T 1989 Appl. Opt. 28 5122
[17] Yang Z Y, Luo T, Jiang S B, Geng J H, Lucas P 2010 Opt. Lett. 35 3360
[18] Nie Q H, Wang, G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 59 7949]
[19] Zhu M M, Wang X S, Pan Z H, Cheng C, Zhu Q D, Jiang C, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Xu T F, Tao G M, Zhang X H 2015 Appl. Phys. A-Mater. 119 455
-
[1] Schliesser A, Picque N, Haensch T W 2012 Nat. Photonics 6 440
[2] Barh A, Ghosh S, Varshney R K, Pal B P 2013 Opt. Express 21 9547
[3] Sun J, Nie Q H, Wang G X, Wang X S, Dai S X, Zhang W, Song B A, Shen X, Xu T F 2011 Acta Phys. Sin. 60 351 (in Chinese) [孙杰, 聂秋华, 王国祥, 王训四, 戴世勋, 张巍, 宋宝安, 沈祥, 徐铁峰 2011 60 351]
[4] Song R, Lei C M, Chen S P, Wang Z F, Hou J 2015 Chin. Phys. B 24 351
[5] Nie Q H, Wang G X, Wang X S, Dai S X, Deng S W, Xu T F, Shen X 2010 Opt. Commun. 283 4004
[6] Wang X S, Nie Q H, Wang G X, Sun J, Song B A, Dai S X, Zhang X H, Bureau B, Boussard C, Conseil C, Ma H L 2012 Spectrochim. Acta Part A 86 586
[7] Xu H J, He Y J, Wang X S, Nie Q H, Zhang P Q, Xu T F, Dai S X, Zhang X H, Tao G M 2014 Infrared Phys. Technol. 65 77
[8] Cheng C, Wang X S, Xu T F, Sun L H, Zhu Q D, Pan Z H, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Shen X, Zhang X H 2015 Infrared Phys. Technol. 72 148
[9] Li C R, Dai S X, Zhang Q Y, Shen X, Wang X S, Zhang P Q, Lu L W, Wu Y H, Lv S Q 2015 Chin. Phys. B 24 241
[10] Tikhomirov V K, Furniss D, Seddon A B, Savage J A, Mason P D, Orchard D A, Lewis K L 2004 Infrared Phys. Technol. 45 115
[11] Inagawa I, Iizuka R, Yamagishi T, Yokota R 1987 J. Non-Cryst. Solids 9596 801
[12] Savage J A, Webber P J, Pitt A M 1980 Infrared Phys. Technol. 20 313
[13] Katsuyama T, Matsumura H 1986 Appl. Phys. Lett. 49 22
[14] Flank A M, Bazin D, Dexpert H, Lagarde P, Hervo C, Barraud J Y 1987 J. Non-Cryst. Solids 91 306
[15] Sanghera J S, Nguyen V Q, Pureza P C, Kung F H, Miklos R, Aggarwal I D 1994 J. Lightwave Technol. 12 737
[16] Nishii J, Yamashita T, Yamagishi T 1989 Appl. Opt. 28 5122
[17] Yang Z Y, Luo T, Jiang S B, Geng J H, Lucas P 2010 Opt. Lett. 35 3360
[18] Nie Q H, Wang, G X, Wang X S, Xu T F, Dai S X, Shen X 2010 Acta Phys. Sin. 59 7949 (in Chinese) [聂秋华, 王国祥, 王训四, 徐铁峰, 戴世勋, 沈祥 2010 59 7949]
[19] Zhu M M, Wang X S, Pan Z H, Cheng C, Zhu Q D, Jiang C, Nie Q H, Zhang P Q, Wu Y H, Dai S X, Xu T F, Tao G M, Zhang X H 2015 Appl. Phys. A-Mater. 119 455
计量
- 文章访问数: 7386
- PDF下载量: 349
- 被引次数: 0