-
提出了一种利用串联谐振腔来抑制光电振荡器边模的方案. 此方案中, 在传统光电振荡器结构中加入无源微波谐振腔结构来提高滤波器的Q值. 分析了该结构的基本原理, 并与传统光电振荡器结构进行对比, 此结构能有效提高边模抑制比. 实验中产生了10 GHz的微波信号, 所测得的边模抑制比达72 dB, 单边带相位噪声为-122 dBc/Hz@10 kHz. 同时, 利用锁相技术, 振荡频率的稳定性得到了很大的改善, 在3 h内漂移小于 4 Hz. 该方案无需增加有源器件, 保留了传统光电振荡器低相位噪声的优势, 又有效抑制了边模, 为光电振荡器的应用提供了一种新的方法.Commercial and military applications of microwave and millimeter-wave sources in aerospace, radar, navigation, and communication system require high spectrum purity and low phase-noise oscillators. The optoelectronic oscillator (OEO) emerges as an excellent low noise source that has attracted great attention in recent years. In this paper, a novel technique is proposed for single-mode selection in an optoelectronic oscillator, which uses a microwave cavity as the mode selector. It consists of a pump laser and a feedback circuit including an intensity modulator, an optical fiber delay lines, a photodetector, an amplifier, a filter and two drilling cables. The drilling cable is fabricated by drilling open holes on a coaxial cable using a drilling machine. By changing the radius of the drilling holes, the designed reflection coefficient can be obtained. By simulation, the constructed microwave resonator that consists of a filter and two drilling cables has a higher Q value and only the modes that satisfy the oscillation conditions of the loop will be selected. The basic principle is analyzed theoretically and experimentally. By comparing with traditional structure of OEO, it is shown that the novel structure can effectively improve the side-mode suppression ratio. In addition, the stability of the oscillation frequency is easier to control than the parallel structure. In this experiment, the output of a 10 GHz single-mode signal with a side-mode suppression ratio of 72 dB and a phase noise of -122 dBc/Hz@10 kHz from the carrier is obtained. Meanwhile, phase-lock techniques are used to compensate the drift of cavity length. Then the radio frequency (RF) stability of the oscillation frequency is measured using an RF spectrum analyzer, and the RF stability over 3 hours for the OEO is less than 4 Hz. This scheme has the advantages of traditional OEO with low noise since no extra active devices are needed, and it suppresses the side-mode noise also effectively. In addition, this system is promising for the development of compact, high frequency, low cost and low noise OEOs.
[1] Yuan H C, Gao Y Y 2009 Semicond. Technol. 34 927 (in Chinese) [袁慧超, 高燕宇 2009 半导体技术 34 927]
[2] Tsuchida H, Suzuki M 2005 IEEE Photon. Technol. Lett. 17 211
[3] Fang L J, Liu Y, Ma J, Guo X F, Gui Y F, Wu P S 2015 Radar Sci. Tech. 13 219 (in Chinese) [方立军, 柳勇, 马骏, 郭雪锋, 桂勇锋, 吴彭生 2015 雷达科学与技术 13 219]
[4] Jung K, Shin J, Kim J 2013 IEEE Photon. J. 5 5500906
[5] Hou L, Han H N, Wang W, Zhang L, Pang L H, Li D H, Wei Z Y 2015 Chin. Phys. B 24 024213
[6] Yang X F, Peng L, Tong Z R, Cao Y, Yang Y F 2012 Acta Opt. Sin. 32 0206004 (in Chinese) [杨秀峰, 彭磊, 童峥嵘, 曹晔, 杨寅飞 2012 光学学报 32 0206004]
[7] Wang T, Sang X Z, Yan B B, Ai Q, Li Y, Chen X, Zhang Y, Chen G X, Song F J, Zhang X, Wang K R, Yuan J H, Yu C X, Xiao F, Kamal A 2014 Chin. Phys. B 23 064217
[8] Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1725
[9] Yao X S, Maleki L 1996 Opt. Lett. 21 483
[10] Eliyahu D, Seidel D, Maleki L 2008 IEEE International Frequency Control Symposium Honolulu, USA, May19-21, 2008 p811
[11] Yao X S, Maleki L 2000 IEEE J. Quantum Electron. 36 79
[12] Jiang Y, Yu J L, Wang Y T, Zhang L T, Yang E Z 2007 IEEE Photon. Technol. Lett. 19 807
[13] Jia S, Yu J L, Wang J, Wang W R, Wu Q, Huang G B, Yang E Z 2015 IEEE Photon. Technol. Lett. 27 213
[14] Wei T, Wu S P, Huang J, Xiao H, Fan J 2011 Appl. Phys. Lett. 99 113517
[15] Brian C. 1991 Transmission Line Design Handbook (Norwood: Artech House Publishers) pp47-57
[16] Ibrahim O, Dimitrios M, Nazanin H, Peter J D 2010 J. Lightwave Technol. 28 3100
[17] Li H X, Jiang Y, Bai G F, Shan Y Y, Liang J H, Ma C, Jia Z R, Zi Y J 2015 Acta Phys. Sin. 64 044202 (in Chinese) [李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣 2015 64 044202]
-
[1] Yuan H C, Gao Y Y 2009 Semicond. Technol. 34 927 (in Chinese) [袁慧超, 高燕宇 2009 半导体技术 34 927]
[2] Tsuchida H, Suzuki M 2005 IEEE Photon. Technol. Lett. 17 211
[3] Fang L J, Liu Y, Ma J, Guo X F, Gui Y F, Wu P S 2015 Radar Sci. Tech. 13 219 (in Chinese) [方立军, 柳勇, 马骏, 郭雪锋, 桂勇锋, 吴彭生 2015 雷达科学与技术 13 219]
[4] Jung K, Shin J, Kim J 2013 IEEE Photon. J. 5 5500906
[5] Hou L, Han H N, Wang W, Zhang L, Pang L H, Li D H, Wei Z Y 2015 Chin. Phys. B 24 024213
[6] Yang X F, Peng L, Tong Z R, Cao Y, Yang Y F 2012 Acta Opt. Sin. 32 0206004 (in Chinese) [杨秀峰, 彭磊, 童峥嵘, 曹晔, 杨寅飞 2012 光学学报 32 0206004]
[7] Wang T, Sang X Z, Yan B B, Ai Q, Li Y, Chen X, Zhang Y, Chen G X, Song F J, Zhang X, Wang K R, Yuan J H, Yu C X, Xiao F, Kamal A 2014 Chin. Phys. B 23 064217
[8] Yao X S, Maleki L 1996 J. Opt. Soc. Am. B 13 1725
[9] Yao X S, Maleki L 1996 Opt. Lett. 21 483
[10] Eliyahu D, Seidel D, Maleki L 2008 IEEE International Frequency Control Symposium Honolulu, USA, May19-21, 2008 p811
[11] Yao X S, Maleki L 2000 IEEE J. Quantum Electron. 36 79
[12] Jiang Y, Yu J L, Wang Y T, Zhang L T, Yang E Z 2007 IEEE Photon. Technol. Lett. 19 807
[13] Jia S, Yu J L, Wang J, Wang W R, Wu Q, Huang G B, Yang E Z 2015 IEEE Photon. Technol. Lett. 27 213
[14] Wei T, Wu S P, Huang J, Xiao H, Fan J 2011 Appl. Phys. Lett. 99 113517
[15] Brian C. 1991 Transmission Line Design Handbook (Norwood: Artech House Publishers) pp47-57
[16] Ibrahim O, Dimitrios M, Nazanin H, Peter J D 2010 J. Lightwave Technol. 28 3100
[17] Li H X, Jiang Y, Bai G F, Shan Y Y, Liang J H, Ma C, Jia Z R, Zi Y J 2015 Acta Phys. Sin. 64 044202 (in Chinese) [李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣 2015 64 044202]
计量
- 文章访问数: 6230
- PDF下载量: 218
- 被引次数: 0