搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光电振荡器产生宽带混沌光的时延特征分析

李凯 王安帮 赵彤 王云才

引用本文:
Citation:

光电振荡器产生宽带混沌光的时延特征分析

李凯, 王安帮, 赵彤, 王云才

Analysis of delay time signature in broadband chaos generated by an optoelectronic oscillator

Li Kai, Wang An-Bang, Zhao Tong, Wang Yun-Cai
PDF
导出引用
  • 理论分析与数值研究了光电振荡器输出的混沌激光特性, 基于自相关分析方法, 详细研究了光电振荡器的直流偏置相移和反馈强度等工作参数对输出信号时延信息的影响. 数值研究表明: 增加反馈强度可以使时延信息变得更加微弱甚至消除; 相同条件下, 直流偏置相移对应的工作点越接近马赫-曾德尔调制器传输特性曲线的极值点, 时延信息越弱; 直流偏置相移为0时可以有效地抑制时延信息. 研究还发现, 当直流偏置相移和反馈调制产生的相移变化π/2时, 自相关曲线上对应于延迟时间处的相关系数符号发生变化.
    Chaotic laser characteristics of an optoelectronic oscillator are investigated theoretically and numerically, and the influences of the offset phase and the feedback strength on the time-delay signature of chaos which is generated by an optoelectronic oscillator are studied, based on the method of autocorrelation function. Numerical analyses show that the increase of the feedback strength can further suppress or even conceal the time-delay signature. The closer to the extreme point of the transmission curve the operating point corresponding to the DC offset phase, the weaker the time-delay signature is. The time-delay signature can be suppressed obviously as the offset phase is set to be 0. We also find that the sign of the correlation coefficient corresponding to the time-delay signature is changed when the offset phase and the phase shift caused by the delay feedback produce a phase-shift value of π/2.
    • 基金项目: 国家自然科学基金科学仪器基础研究专款(批准号: 60927007);国家自然科学基金专项基金(批准号: 61227016);国家自然科学基金青年科学基金(批准号: 60908014, 61205142)和山西省归国学者基金(批准号: 2010-3)资助的课题.
    • Funds: Project supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Fundation of China (Grant No. 60927007), the Special Funds of the National Natural Science Foundation of China (Grant No. 61227016), the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 60908014, 61205142), and the Shanxi Provincial Foundation for Returned Scholars (Main Program), China (Grant No. 2010-3).
    [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 437 343

    [2]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2009 Nature Photon. 4 58

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815

    [4]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [5]

    Wu Y, Wang Y C, Li P, Wang A B, Zhang M J 2012 IEEE J. Quantum Electron. 48 1371

    [6]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515

    [7]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 59 7679]

    [8]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 10 991

    [9]

    Fan Y, Xia G Q, Wu Z M 2008 Acta Phys. Sin. 57 7663 (in Chinese) [范燕, 夏光琼, 吴正茂 2008 57 7663]

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [12]

    Xiang S Y, Pan W, Yan L S, Luo B, Zou X H, Jiang N, Wen K H 2011 Chin. Phys. Lett. 28 014203

    [13]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [14]

    Ding L, Wu J G, Xia G Q, Shen J T, Li N Y, Wu Z M 2011 Acta Phys. Sin. 60 014210 (in Chinese) [丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂 2011 60 014210]

    [15]

    Li S S, Liu Q, Chun S C 2012 IEEE Photon. J. 5 1930

    [16]

    Zhang J Z, Wang A B, Zhang M J, Li X C, Wang Y C 2011 Acta Phys. Sin. 60 094207 (in Chinese) [张建忠, 王安帮, 张明江, 李晓春, 王云才 2011 60 094207]

    [17]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [18]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409

    [19]

    Callan K E, Illing L, Gao Z, Gauthier D J, Schöll E 2010 Phys. Rev. Lett. 104 113901

    [20]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [21]

    Goedgebuer J P, Levy P, Larger L, Chen C C, Rhodes W T 2002 IEEE J. Quantum Electron. 38 1178

    [22]

    Kouomou C Y, Colet P, Larger L, Gastaud N 2005 IEEE J. Quantum Electron. 41 156

    [23]

    Kouomou C Y, Colet P, Larger L, Gastaud N 2005 Phys. Rev. Lett. 95 203903

    [24]

    Peil M, Larger L, Fischer I 2007 Phys. Rev. E 76 045201

    [25]

    Peil M, Jacquot M, Kouomou C Y, Larger L, Erneux T 2009 Phys. Rev. E 79 026208

    [26]

    Lavrov R, Peil M, Jacquot M, Larger L, Udaltsov V, Dudley J 2009 Phys. Rev. E 80 026207

    [27]

    Nguimdo R M, Colet P, Mirasso C 2010 IEEE J. Quantum Electron. 46 1436

    [28]

    Larger L, Dudley J M 2010 Nature 465 41

    [29]

    Rontani D, Locquet A, Sciamanna M Citrin D S, Uchida A 2011 Opt. Lett. 36 2287

    [30]

    Illing L, Panda C D, Shareshian L 2011 Phys. Rev. E 84 016213

    [31]

    Ravoori B, Cohen A B, Sun J, Motteret A E, Murphy T E, Roy R 2011 Phys. Rev. Lett. 107 034102

    [32]

    Weicker L, Erneux T 2012 Phys. Rev. E 85 026206

    [33]

    Nguimdo R M, Colet P 2012 Opt. Express 20 25333

    [34]

    Suárez-Vargas J J, Márquez B A, González J A 2012 Appl. Phys. Lett. 101 071115

    [35]

    Williams C R S, Murphy T E, Roy R, Sorrentino F, Dahms T, Schöll E 2013 Phys. Rev. Lett. 110 064104

    [36]

    Udaltsov V S, Larger L, Goedgebue J P, Locquet A, Citrin D S 2005 J. Opt. Technol. 72 373

    [37]

    Hizanidis J, Deligiannidis S, Bogris A, Syvridis D 2010 IEEE J. Quantum Electron. 46 1642

    [38]

    Nguimdo R M, Colet P, Larger L, Pesquera L 2011 Phys. Rev. Lett. 107 034103

  • [1]

    Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, García-Ojalvo J, Mirasso C R, Pesquera L, Shore K A 2005 Nature 437 343

    [2]

    Kanter I, Aviad Y, Reidler I, Cohen E, Rosenbluh M 2009 Nature Photon. 4 58

    [3]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 40 815

    [4]

    Wang Y C, Wang B J, Wang A B 2008 IEEE Photon. Technol. Lett. 20 1636

    [5]

    Wu Y, Wang Y C, Li P, Wang A B, Zhang M J 2012 IEEE J. Quantum Electron. 48 1371

    [6]

    Zhao Q C, Wang Y C, Wang A B 2009 Appl. Opt. 48 3515

    [7]

    Zhang J B, Zhang J Z, Yang Y B, Liang J S, Wang Y C 2010 Acta Phys. Sin. 59 7679 (in Chinese) [张继兵, 张建忠, 杨毅彪, 梁君生, 王云才 2010 59 7679]

    [8]

    Lin F Y, Liu J M 2004 IEEE J. Quantum Electron. 10 991

    [9]

    Fan Y, Xia G Q, Wu Z M 2008 Acta Phys. Sin. 57 7663 (in Chinese) [范燕, 夏光琼, 吴正茂 2008 57 7663]

    [10]

    Rontani D, Locquet A, Sciamanna M, Citrin D S, Ortin S 2009 IEEE J. Quantum Electron. 45 879

    [11]

    Wu J G, Xia G Q, Tang X, Lin X D, Deng T, Fan L, Wu Z M 2010 Opt. Express 18 6661

    [12]

    Xiang S Y, Pan W, Yan L S, Luo B, Zou X H, Jiang N, Wen K H 2011 Chin. Phys. Lett. 28 014203

    [13]

    Wu J G, Xia G Q, Wu Z M 2009 Opt. Express 17 20124

    [14]

    Ding L, Wu J G, Xia G Q, Shen J T, Li N Y, Wu Z M 2011 Acta Phys. Sin. 60 014210 (in Chinese) [丁灵, 吴加贵, 夏光琼, 沈金亭, 李能尧, 吴正茂 2011 60 014210]

    [15]

    Li S S, Liu Q, Chun S C 2012 IEEE Photon. J. 5 1930

    [16]

    Zhang J Z, Wang A B, Zhang M J, Li X C, Wang Y C 2011 Acta Phys. Sin. 60 094207 (in Chinese) [张建忠, 王安帮, 张明江, 李晓春, 王云才 2011 60 094207]

    [17]

    Zhang L Y, Pan W, Yan L S, Luo B, Zou X H, Xiang S Y, Li N Q 2012 IEEE Photon. Technol. Lett. 24 1693

    [18]

    Zhong Z Q, Wu Z M, Wu J G, Xia G Q 2013 IEEE Photon. J. 5 1500409

    [19]

    Callan K E, Illing L, Gao Z, Gauthier D J, Schöll E 2010 Phys. Rev. Lett. 104 113901

    [20]

    Vicente R, Daudén J, Colet P, Toral R 2005 IEEE J. Quantum Electron. 41 541

    [21]

    Goedgebuer J P, Levy P, Larger L, Chen C C, Rhodes W T 2002 IEEE J. Quantum Electron. 38 1178

    [22]

    Kouomou C Y, Colet P, Larger L, Gastaud N 2005 IEEE J. Quantum Electron. 41 156

    [23]

    Kouomou C Y, Colet P, Larger L, Gastaud N 2005 Phys. Rev. Lett. 95 203903

    [24]

    Peil M, Larger L, Fischer I 2007 Phys. Rev. E 76 045201

    [25]

    Peil M, Jacquot M, Kouomou C Y, Larger L, Erneux T 2009 Phys. Rev. E 79 026208

    [26]

    Lavrov R, Peil M, Jacquot M, Larger L, Udaltsov V, Dudley J 2009 Phys. Rev. E 80 026207

    [27]

    Nguimdo R M, Colet P, Mirasso C 2010 IEEE J. Quantum Electron. 46 1436

    [28]

    Larger L, Dudley J M 2010 Nature 465 41

    [29]

    Rontani D, Locquet A, Sciamanna M Citrin D S, Uchida A 2011 Opt. Lett. 36 2287

    [30]

    Illing L, Panda C D, Shareshian L 2011 Phys. Rev. E 84 016213

    [31]

    Ravoori B, Cohen A B, Sun J, Motteret A E, Murphy T E, Roy R 2011 Phys. Rev. Lett. 107 034102

    [32]

    Weicker L, Erneux T 2012 Phys. Rev. E 85 026206

    [33]

    Nguimdo R M, Colet P 2012 Opt. Express 20 25333

    [34]

    Suárez-Vargas J J, Márquez B A, González J A 2012 Appl. Phys. Lett. 101 071115

    [35]

    Williams C R S, Murphy T E, Roy R, Sorrentino F, Dahms T, Schöll E 2013 Phys. Rev. Lett. 110 064104

    [36]

    Udaltsov V S, Larger L, Goedgebue J P, Locquet A, Citrin D S 2005 J. Opt. Technol. 72 373

    [37]

    Hizanidis J, Deligiannidis S, Bogris A, Syvridis D 2010 IEEE J. Quantum Electron. 46 1642

    [38]

    Nguimdo R M, Colet P, Larger L, Pesquera L 2011 Phys. Rev. Lett. 107 034103

  • [1] 郭龑强, 王李静, 王宇, 房鑫, 赵彤, 郭晓敏. 光场高阶光子关联的分析与测量.  , 2020, 69(17): 174204. doi: 10.7498/aps.69.20200325
    [2] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术.  , 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [3] 麻艳娜, 黄添添, 王文睿, 宋开臣. 基于双环混频光电振荡器的可调谐微波频率梳产生.  , 2018, 67(23): 238401. doi: 10.7498/aps.67.20181582
    [4] 黄港膑, 王菊, 王文睿, 贾石, 于晋龙. 一种基于串联谐振腔的高性能光电振荡器.  , 2016, 65(4): 044204. doi: 10.7498/aps.65.044204
    [5] 贾石, 于晋龙, 王菊, 王子雄, 陈斌. 重复频率可调谐的超低抖动光窄脉冲源的研究.  , 2015, 64(18): 184201. doi: 10.7498/aps.64.184201
    [6] 吴穹, 于晋龙, 王菊, 王文睿, 贾石, 黄港膑, 黑克非, 李丽娟. 一种基于微波谐振测量Sagnac效应的新方案.  , 2015, 64(4): 044205. doi: 10.7498/aps.64.044205
    [7] 贾石, 于晋龙, 王菊, 王文睿, 王子雄, 陈斌. 基于波长双环路结构的新型光电振荡器的研究.  , 2015, 64(15): 154204. doi: 10.7498/aps.64.154204
    [8] 李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣. 有源环形谐振腔辅助滤波的单模光电振荡器.  , 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [9] 俞清, 包伯成, 胡丰伟, 徐权, 陈墨, 王将. 基于一阶广义忆阻器的文氏桥混沌振荡器研究.  , 2014, 63(24): 240505. doi: 10.7498/aps.63.240505
    [10] 张淑清, 李新新, 张立国, 胡永涛, 李亮. 基于符号分析的极大联合熵延迟时间求取方法.  , 2013, 62(11): 110506. doi: 10.7498/aps.62.110506
    [11] 高玮, 吕志伟, 何伟明. 微弱光信号瞬态布里渊放大器的最佳工作点.  , 2012, 61(20): 204204. doi: 10.7498/aps.61.204204
    [12] 胡辉勇, 舒钰, 张鹤鸣, 宋建军, 宣荣喜, 秦珊珊, 屈江涛. 含有本征SiGe层的SiGe异质结双极晶体管集电结耗尽层宽度模型.  , 2011, 60(1): 017303. doi: 10.7498/aps.60.017303
    [13] 刘凌宇, 田慧平, 纪越峰. 光子晶体波导中的孤子传输及其延迟特性研究.  , 2011, 60(10): 104216. doi: 10.7498/aps.60.104216
    [14] 禹思敏. 四阶Colpitts混沌振荡器.  , 2008, 57(6): 3374-3379. doi: 10.7498/aps.57.3374
    [15] 高 玮, 吕志伟, 何伟明, 董永康. 水中受激布里渊散射微弱Stokes信号光的高增益放大.  , 2008, 57(4): 2248-2252. doi: 10.7498/aps.57.2248
    [16] 赵益波, 罗晓曙. 基于Washout滤波器技术的Colpitts振荡器混沌控制研究.  , 2007, 56(11): 6258-6262. doi: 10.7498/aps.56.6258
    [17] 杨 汝, 张 波. DC-DC buck变换器时间延迟反馈混沌化控制.  , 2007, 56(7): 3789-3795. doi: 10.7498/aps.56.3789
    [18] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究.  , 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [19] 冯秀琴, 沈 柯. 简并光学参量振荡器混沌反控制.  , 2006, 55(9): 4455-4459. doi: 10.7498/aps.55.4455
    [20] 林尊琪, 郑玉霞, 余文炎. 激光振荡器中采用软边光阑技术.  , 1979, 28(2): 268-275. doi: 10.7498/aps.28.268
计量
  • 文章访问数:  5930
  • PDF下载量:  654
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-14
  • 修回日期:  2013-04-03
  • 刊出日期:  2013-07-05

/

返回文章
返回
Baidu
map