搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究

曲灵丰 侯清玉 赵春旺

引用本文:
Citation:

Y掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究

曲灵丰, 侯清玉, 赵春旺

Optical bandgap and absorption spectra of Y doped ZnO studied by first-principle calculations

Qu Ling-Feng, Hou Qing-Yu, Zhao Chun-Wang
PDF
导出引用
  • 对于Y掺杂ZnO, 当摩尔数在0.03130.0625之内, Y掺杂量越增加, 吸收光谱发生红移和蓝移两种不同实验结果均有文献报道. 本文使用Materials Studio软件下的CASTEP模块中密度泛函理论的第一性原理平面波模守恒(Norm conserving)赝势GGA+U的方法, 构建了未掺杂纤锌矿ZnO单胞以及Y掺杂ZnO的Zn0.9687Y0.0313O超胞、Zn0.9583Y0.0417O超胞和Zn0.9375Y0.0625O超胞模型. 对掺杂前后体系的能带结构、态密度、差分电荷密度、布居值以及吸收光谱进行了计算. 计算结果表明: 当Y掺杂摩尔数在0.03130.0625之内, Y 掺杂量越增加, 掺杂体系的晶格常数、体积、 总能量越增大, 掺杂体系越不稳定、 形成能越增大、掺杂越难; 掺杂体系中平行于和垂直于c轴的YO键布居值越减小、 离子键越增强、 共价键越减弱、键长越变长; 掺杂体系的最小光学带隙越变宽、 吸收光谱发生蓝移现象越明显. 吸收光谱的计算结果与实验结果相符合, 合理解释了吸收光谱红移、蓝移的争论. 这对制备Y 掺杂ZnO 短波长光学器件能起到一定的理论指导作用.
    The studies on absorption spectra of Y-doped ZnO have presented two distinctly different experimental results, which are the red shift and blue shift on the optical bandgap and absorption spectra when the mole fraction of impurity increases from 0.0313 to 0.0625. To solve this contradiction, the calculations in this paper are carried out by the CASTEP tool in the materials studio software based on the first-principal calculations of norm conserving pseudopotential of the density functional theory, and the geometric structures of ZnO, Zn0.9687Y0.0313O, Zn0.9583Y0.0417O and Zn0.9375Y0.0625O systems are constructed. By using the method of GGA+U, we calculate the band structure, density of state, electron density difference, population, orbital charges and absorption spectrum. The results show that with the doping amount increasing from 0.0313 to 0.0625, both the lattice parameters and the volume of doping system increase: the higher the total energy of the doping system the higher the formation energy of the doping system is, thereby making doping difficult and the stability of the doping system lower Increasing Y-doping concentration weakens the covalent bond, strengthens the ionic bond; as Y doping concentration increases, the Mulliken bond populations and bond lengths of Y-O parallel and vertical to c-axis decrease for the doping system. Meanwhile, the more the Y doping content, the wider the optical bandgap of the doping system becomes and thus more significant the blue shift of absorption spectra of Y-doped ZnO systems will be. The calculation results of absorption spectra of Y-doped ZnO system are consistent with the experimental data. And the contradiction between blue shift and red shift of absorption spectra of Y-doped ZnO system is explained reasonably. These results may contribute to the improvement of the design and the preparation of short wavelength optical devices from Y-doped ZnO.
      通信作者: 侯清玉, by0501119@126.com
    • 基金项目: 国家自然科学基金(批准号: 61366008, 11272142)、教育部春晖计划和内蒙古自治区高等学校科学研究项目(批准号: NJZZ13099)资助的课题.
      Corresponding author: Hou Qing-Yu, by0501119@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61366008, 11272142), the Spring Sunshine Project of Ministry of Education of China, and the College Science Research Project of Inner Mongolia Autonomous Region, China (Grant No. NJZZ13099).
    [1]

    Mary J A, Vijaya J J, Bououdina M, Kennedy L J, Dai J H, Song Y 2015 Physica E 66 209

    [2]

    Wong K M, Alay A S M, Shaukat A, Fang Y, Lei Y 2013 J. Appl. Phys. 113 014304

    [3]

    Chiu H M, Yang T H, Hsueh Y C, Perng T P, Wu J M 2015 Appl. Catal. B: Environ. 163 156

    [4]

    Ciciliati M A, Silva M F, Fernandes D M, de Melo M A C, Hechenleitner A A W, Pined E A G 2015 Mater. Lett. 159 84

    [5]

    Pessoni H V S, Maia L J Q, Jr A F 2015 Mater. Sci. Semicond. Process. 30 135

    [6]

    Wang C Y, Ma S Y, Li F M, Chen Y, Xu X L, Wang T, Yang F C, Zhao Q, Liu J, Zhang X L, Li X B, Yang X H, Zhu J 2014 Mater. Sci. Semicond. Process. 17 27

    [7]

    Zheng S W, Fan G H, He M, Zhang T 2014 Chin. Phys. B 23 066301

    [8]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [9]

    Heo S, Sharma S K, Lee S, Lee Y, Kim C, Lee B, Lee H, Kim D Y 2014 Thin Solid Films 558 27

    [10]

    Kao M C, Chen H Z, Young S L, Lin C C, Kung C Y 2012 Nanoscale Res. Lett. 7 260

    [11]

    Zheng J H, Song J L, Jiang Q, Lian J S 2012 Appl. Surf. Sci. 258 6735

    [12]

    Hammad T M, Salem J K, Harrison R G 2009 Nano 4 225

    [13]

    Jia T, Wang W, Long F, Fu Z Y, Wang H, Zhang Q J 2009 Mat. Sci. Eng. B 162 179

    [14]

    Gao M, Yang J H, Yang L L, Zhang Y J, Lang J H, Liu H L, Fan H G, Sun Y F, Zhang Z Q, Song H 2012 Superlattices. Micros. 52 84

    [15]

    Chen L L, Xiong Z H 2011 In Photonics and Optoelectronics (SOPO), Symposium on (1-4) IEEE

    [16]

    Bai L N, Sun H M, Lian J S, Jiang Q 2012 Chin. Phys. Lett. 29 117101

    [17]

    Lan Z H, Miao X J 2011 Mater. Sci. Forum 694 928

    [18]

    Lan Z H, Miao X J 2014 Appl. Mech. Mater. 513 70

    [19]

    Wang P, He J F, Guo L X, Yang Y T, Zheng S K 2015 Mat. Sci. Semicon. Proc. 36 36

    [20]

    Mohamed S H, El H M, Ismail M E 2010 J. Nat. Sci. Math. 3 97

    [21]

    Zheng J H, Song J L, Jiang Q, Lian J S 2012 Appl. Surf. Sci. 258 6735

    [22]

    Saoud F S, Plenet J C, Henini M 2015 J. Alloy. Comp. 619 812

    [23]

    Zhang X D, Guo M L, Shen Y Y, Liu C L, Xue Y H, Zhang L H 2012 Comp. Mater. Sci. 54 75

    [24]

    Hapiuk D, Marques M A L, Botti S, Melinon P, Masenelli B, Flores L J A 2015 New J. Phys. 17 043034

    [25]

    Sun J, Zhou X F, Fan Y X, Chen J, Wang H T 2006 Phys. Rev. B 73 045108

    [26]

    Wu H C, Peng Y C, Chen C C 2013 Opt. Mater. 35 509

    [27]

    Huang G Y, Wang C Y, Wang J T 2012 Comput. Phys. Commun. 183 1749

    [28]

    Bai L N, Zheng B J, Lian J S Jiang Q 2012 Solid State Sci. 14 698

    [29]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [30]

    Guo S Q, Hou Q Y, Zhao C W, Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese) [郭少强, 侯清玉, 赵春旺, 毛斐 2014 63 107101]

    [31]

    Li P, Deng S H, Zhang L, Li Y B, Yu J Y, Liu D 2010 Chin. J. Chem. Phys. 23 527

    [32]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B 44 943

    [33]

    Anandan S, Muthukumaran S 2013 Opt. Mater. 35 2241

    [34]

    Guo W, Liu T M, Sun R, Chen Y, Zeng W, Wang Z C 2013 Sensors Actuat. B: Chem. 178 53

    [35]

    Ma X G, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689

    [36]

    Long R, English N J 2009 Appl. Phys. Lett. 94 132102

    [37]

    Sun C Q 2003 Prog. Mater. Sci. 48 521

    [38]

    Hou Q Y, Zhao C W, Jin Y J 2009 Acta Phys. Sin. 58 7136 (in Chinese) [侯清玉, 赵春旺, 金永军 2009 58 7136]

  • [1]

    Mary J A, Vijaya J J, Bououdina M, Kennedy L J, Dai J H, Song Y 2015 Physica E 66 209

    [2]

    Wong K M, Alay A S M, Shaukat A, Fang Y, Lei Y 2013 J. Appl. Phys. 113 014304

    [3]

    Chiu H M, Yang T H, Hsueh Y C, Perng T P, Wu J M 2015 Appl. Catal. B: Environ. 163 156

    [4]

    Ciciliati M A, Silva M F, Fernandes D M, de Melo M A C, Hechenleitner A A W, Pined E A G 2015 Mater. Lett. 159 84

    [5]

    Pessoni H V S, Maia L J Q, Jr A F 2015 Mater. Sci. Semicond. Process. 30 135

    [6]

    Wang C Y, Ma S Y, Li F M, Chen Y, Xu X L, Wang T, Yang F C, Zhao Q, Liu J, Zhang X L, Li X B, Yang X H, Zhu J 2014 Mater. Sci. Semicond. Process. 17 27

    [7]

    Zheng S W, Fan G H, He M, Zhang T 2014 Chin. Phys. B 23 066301

    [8]

    Cao M M, Zhao X R, Duan L B, Liu J R, Guan M M, Guo W R 2014 Chin. Phys. B 23 047805

    [9]

    Heo S, Sharma S K, Lee S, Lee Y, Kim C, Lee B, Lee H, Kim D Y 2014 Thin Solid Films 558 27

    [10]

    Kao M C, Chen H Z, Young S L, Lin C C, Kung C Y 2012 Nanoscale Res. Lett. 7 260

    [11]

    Zheng J H, Song J L, Jiang Q, Lian J S 2012 Appl. Surf. Sci. 258 6735

    [12]

    Hammad T M, Salem J K, Harrison R G 2009 Nano 4 225

    [13]

    Jia T, Wang W, Long F, Fu Z Y, Wang H, Zhang Q J 2009 Mat. Sci. Eng. B 162 179

    [14]

    Gao M, Yang J H, Yang L L, Zhang Y J, Lang J H, Liu H L, Fan H G, Sun Y F, Zhang Z Q, Song H 2012 Superlattices. Micros. 52 84

    [15]

    Chen L L, Xiong Z H 2011 In Photonics and Optoelectronics (SOPO), Symposium on (1-4) IEEE

    [16]

    Bai L N, Sun H M, Lian J S, Jiang Q 2012 Chin. Phys. Lett. 29 117101

    [17]

    Lan Z H, Miao X J 2011 Mater. Sci. Forum 694 928

    [18]

    Lan Z H, Miao X J 2014 Appl. Mech. Mater. 513 70

    [19]

    Wang P, He J F, Guo L X, Yang Y T, Zheng S K 2015 Mat. Sci. Semicon. Proc. 36 36

    [20]

    Mohamed S H, El H M, Ismail M E 2010 J. Nat. Sci. Math. 3 97

    [21]

    Zheng J H, Song J L, Jiang Q, Lian J S 2012 Appl. Surf. Sci. 258 6735

    [22]

    Saoud F S, Plenet J C, Henini M 2015 J. Alloy. Comp. 619 812

    [23]

    Zhang X D, Guo M L, Shen Y Y, Liu C L, Xue Y H, Zhang L H 2012 Comp. Mater. Sci. 54 75

    [24]

    Hapiuk D, Marques M A L, Botti S, Melinon P, Masenelli B, Flores L J A 2015 New J. Phys. 17 043034

    [25]

    Sun J, Zhou X F, Fan Y X, Chen J, Wang H T 2006 Phys. Rev. B 73 045108

    [26]

    Wu H C, Peng Y C, Chen C C 2013 Opt. Mater. 35 509

    [27]

    Huang G Y, Wang C Y, Wang J T 2012 Comput. Phys. Commun. 183 1749

    [28]

    Bai L N, Zheng B J, Lian J S Jiang Q 2012 Solid State Sci. 14 698

    [29]

    Xu X G, Zhang D L, Wu Y, Zhang X, Li X Q, Yang H L, Jiang Y 2012 Rare Metals 31 107

    [30]

    Guo S Q, Hou Q Y, Zhao C W, Mao F 2014 Acta Phys. Sin. 63 107101 (in Chinese) [郭少强, 侯清玉, 赵春旺, 毛斐 2014 63 107101]

    [31]

    Li P, Deng S H, Zhang L, Li Y B, Yu J Y, Liu D 2010 Chin. J. Chem. Phys. 23 527

    [32]

    Anisimov V V, Zaanen J, Andersen K 1991 Phys. Rev. B 44 943

    [33]

    Anandan S, Muthukumaran S 2013 Opt. Mater. 35 2241

    [34]

    Guo W, Liu T M, Sun R, Chen Y, Zeng W, Wang Z C 2013 Sensors Actuat. B: Chem. 178 53

    [35]

    Ma X G, Miao L, Bie S W, Jiang J J 2010 Solid State Commun. 150 689

    [36]

    Long R, English N J 2009 Appl. Phys. Lett. 94 132102

    [37]

    Sun C Q 2003 Prog. Mater. Sci. 48 521

    [38]

    Hou Q Y, Zhao C W, Jin Y J 2009 Acta Phys. Sin. 58 7136 (in Chinese) [侯清玉, 赵春旺, 金永军 2009 58 7136]

  • [1] 罗娅, 张耘, 梁金铃, 刘林凤. 铜铁镁三掺铌酸锂晶体的第一性原理研究.  , 2020, 69(5): 054205. doi: 10.7498/aps.69.20191799
    [2] 梁金铃, 张耘, 邱晓燕, 吴圣钰, 罗娅. 铁镁共掺钽酸锂晶体的第一性原理研究.  , 2019, 68(20): 204205. doi: 10.7498/aps.68.20190575
    [3] 张耘, 王学维, 柏红梅. 第一性原理下铟锰共掺铌酸锂晶体的电子结构和吸收光谱.  , 2017, 66(2): 024208. doi: 10.7498/aps.66.024208
    [4] 贾晓芳, 侯清玉, 赵春旺. 采用第一性原理研究钼掺杂浓度对ZnO物性的影响.  , 2017, 66(6): 067401. doi: 10.7498/aps.66.067401
    [5] 侯清玉, 曲灵丰, 赵春旺. Al-2N掺杂量对ZnO光电性能的影响.  , 2016, 65(5): 057401. doi: 10.7498/aps.65.057401
    [6] 李聪, 郑友进, 付斯年, 姜宏伟, 王丹. 稀土(La/Ce/Pr/Nd)掺杂锐钛矿相TiO2磁性及光催化活性的第一性原理研究.  , 2016, 65(3): 037102. doi: 10.7498/aps.65.037102
    [7] 赵佰强, 张耘, 邱晓燕, 王学维. Fe:Mg:LiNbO3晶体电子结构和吸收光谱的第一性原理研究.  , 2015, 64(12): 124210. doi: 10.7498/aps.64.124210
    [8] 许镇潮, 侯清玉. GGA+U的方法研究Ag掺杂浓度对ZnO带隙和吸收光谱的影响.  , 2015, 64(15): 157101. doi: 10.7498/aps.64.157101
    [9] 侯清玉, 李文材, 赵春旺. In–2N高共掺浓度和择优取向对ZnO最小光学带隙和吸收光谱的影响.  , 2015, 64(6): 067101. doi: 10.7498/aps.64.067101
    [10] 侯清玉, 吕致远, 赵春旺. V高掺杂量对ZnO(GGA+U)导电性能和吸收光谱影响的研究.  , 2014, 63(19): 197102. doi: 10.7498/aps.63.197102
    [11] 侯清玉, 郭少强, 赵春旺. 氧空位浓度对ZnO电子结构和吸收光谱影响的研究.  , 2014, 63(14): 147101. doi: 10.7498/aps.63.147101
    [12] 徐朝鹏, 王永贞, 张伟, 王倩, 吴国庆. Tl掺杂对InI禁带宽度和吸收边带影响的第一性原理研究.  , 2014, 63(14): 147102. doi: 10.7498/aps.63.147102
    [13] 毛斐, 侯清玉, 赵春旺, 郭少强. Pr高掺杂浓度对锐钛矿TiO2的带隙和吸收光谱影响的研究.  , 2014, 63(5): 057103. doi: 10.7498/aps.63.057103
    [14] 郭少强, 侯清玉, 赵春旺, 毛斐. V高掺杂ZnO最小光学带隙和吸收光谱的第一性原理研究.  , 2014, 63(10): 107101. doi: 10.7498/aps.63.107101
    [15] 侯清玉, 董红英, 迎春, 马文. Mn高掺杂浓度对ZnO禁带宽度和吸收光谱影响的第一性原理研究.  , 2013, 62(3): 037101. doi: 10.7498/aps.62.037101
    [16] 侯清玉, 董红英, 马文, 赵春旺. Ga高掺杂对ZnO的最小光学带隙和吸收带边影响的第一性原理研究.  , 2013, 62(15): 157101. doi: 10.7498/aps.62.157101
    [17] 李聪, 侯清玉, 张振铎, 赵春旺, 张冰. Sm-N共掺杂对锐钛矿相TiO2的电子结构和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167103. doi: 10.7498/aps.61.167103
    [18] 李聪, 侯清玉, 张振铎, 张冰. Eu掺杂量对锐钛矿相TiO2电子寿命和吸收光谱影响的第一性原理研究.  , 2012, 61(7): 077102. doi: 10.7498/aps.61.077102
    [19] 侯清玉, 董红英, 迎春, 马文. Al高掺杂浓度对ZnO禁带和吸收光谱影响的第一性原理研究.  , 2012, 61(16): 167102. doi: 10.7498/aps.61.167102
    [20] 徐凌, 唐超群, 钱俊. C掺杂锐钛矿相TiO2吸收光谱的第一性原理研究.  , 2010, 59(4): 2721-2727. doi: 10.7498/aps.59.2721
计量
  • 文章访问数:  6974
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-08-06
  • 修回日期:  2015-11-02
  • 刊出日期:  2016-02-05

/

返回文章
返回
Baidu
map