-
基于锑化铟材料在太赫兹波段的横向磁光效应, 提出了一种金属-空气-锑化铟-金属非对称周期性亚波长线栅阵列结构的表面等离子体器件, 研究了外加磁场和温度对不同频率透射波聚焦特性的影响. 结果表明, 在外加磁场强度B=0.6 T、温度T=172 K时, 可实现0.8 THz 透射光束的聚焦, 焦点处能流密度透过率比没有外加磁场时增强28倍. 对于不同频率入射波, 通过主动调节磁场强度和温度, 能实现从0.40.8 THz宽频带的聚焦, 而且焦点处的透过率相比于无外加磁场时的普通狭缝聚焦透过率增强20倍以上, 该器件是太赫兹波段理想的可调谐、宽频段、高透过率的聚焦器件.With the continuous development of terahertz (THz) technology in recent years, many kinds of THz functional devices including switchers, filters, modulators, isolator and polarizers have been demonstrated. However, researches of the focusing devices in the terahertz frequency range are rarely reported. In this paper, we propose a subwavelength metal-air-InSb-metal periodic array structure to perform terahertz wave focusing. The dependence of permittivity of InSb in the THz regime on external magnetic field and temperature is calculated theoretically. Based on the magneto-optical effect of the semiconductor material InSb and asymmetrical waveguide structure, the influences of external magnetic field and temperature on the focusing and transmittance characteristics of the device are studied in detail. Numerically simulated results show that the structure proposed above can not only improve the transmittance greatly but also perform focusing perfectly. Calculations on the transmission properties show that in a certain range of temperature, the power flow transmittance at the focus point increases with the increase of temperature. In the meantime, for a certain temperature, with increasing the external magnetic field, the power flow continuously increases as well and reaches a maximum value at a certain magnetic field. For example, for a temperature of 172 K and a magnetic field of 0.6 T, the maximum power flow transmitted at the focus point is 10200 W/m2 at 0.8 THz, which is about 28 times larger than that without magnetic field at the same temperature. In addition, the simulation results also show that when the temperature and external magnetic field are fixed at 172 K and 0.5 T, respectively, the power flow transmittances for the incident waves at different frequencies are different. There is a peak value of the transmittance appearing at a specific frequency of 0.8 THz. Moreover, when the incident wave frequency is far from 0.8 THz, the transmittance decreases dramatically. It is worth noting that by choosing different temperatures and external magnetic fields, the structure proposed can not only enhance the transmittance over 20 times at the focus point, but also manipulate effectively the THz wave in a broad operating bandwidth of 400 GHz from 0.4 THz to 0.8 THz. These properties indicate that the proposed structure can act as an ideal tunable, broadband, and high transmittance focusing device in the terahertz regime.
-
Keywords:
- terahertz /
- InSb /
- magneto-plasmons /
- focus
[1] Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516
[2] Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153
[3] Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381
[4] Hu M, Zhang Y X, Yan Y, Zhong R B, Liu S G 2009 Chin. Phys. B 18 3877
[5] Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 64 074101]
[6] Withayachumnankul W, Abbott D 2009 IEEE Photon. J. 1 99
[7] Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 61 137301]
[8] Mao Q, Wen Q Y, Tian W, Wen T L, Chen, Z, Yang Q H, Zhang H W 2014 Opt. Lett. 39 5649
[9] He J L, Liu P G, He Y L, Hong Z 2012 Appl. Opt. 51 776
[10] Huang Z, Parrott E P J, Park H, Chan H P, Pickwell-MacPherson E 2014 Opt. Lett. 39 793
[11] Chen S, Fan F, Wang X H, Wu P F, Zhang H, Chang S J 2015 Opt. Express 23 1015
[12] Miyamaru F, Hayashi S, Otani C, Kawase K, Ogawa Y, Yoshida H, Kato E 2006 Opt. Lett. 31 1118
[13] Xiao X A, Wu J B, Miyamaru F, Zhang M Y, Li S B, Takeda M W, Wen W J, Sheng P 2011 Appl. Phys. Lett. 98 011911
[14] Sasaki T, Noda K, Kawatsuki N, Ono H 2015 Opt. Lett. 40 1544
[15] Arikawa T, Wang X F, Belyanin A A, Kono J 2012 Opt. Express 20 19484
[16] Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103
[17] Shi H F, Wang C T, Du C L, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815
[18] Meng Q D, Gui L, Zhang X L, Zhang L W, Geng D F, L Y Q 2014 Acta Phys. Sin. 63 118503 (in Chinese) [孟庆端, 贵磊, 张晓玲, 张立文, 耿东峰, 吕衍秋 2014 63 118503]
[19] Guo N, Hu W D, Chen X S, Meng C, L Y Q, Lu W 2011 J. Electron. Mater. 40 1647
[20] Bai J, Hu W D, Guo N, Lei W, L Y Q, Zhang X L, Si J J, Chen X S, Lu W 2014 J. Electron. Mater. 43 2795
[21] Zhu F M, Li X E, Shen L F 2014 Appl. Opt. 53 5896
[22] Li W, Kuang D F, Fan F, Chang S J, Lin L 2012 Appl. Opt. 51 7098
[23] Hu B, Wang Q J, Kok S W, Zhang Y 2012 Plasmonics 7 191
[24] Fan F, Chen S, Wang X H, Chang S J 2013 Opt. Express 21 8614
[25] Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895
[26] Halevi P, Ramos-Mendieta F 2000 Phys. Rev. Lett. 85 1875
-
[1] Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H 1999 Appl. Phys. Lett. 74 1516
[2] Carr G L, Martin M C, McKinney W R, Jordan K, Neil G R, Williams G P 2002 Nature 420 153
[3] Rochat M, Ajili L, Willenberg H, Faist J, Beere H, Davies G, Linfield E, Ritchie D 2002 Appl. Phys. Lett. 81 1381
[4] Hu M, Zhang Y X, Yan Y, Zhong R B, Liu S G 2009 Chin. Phys. B 18 3877
[5] Deng X H, Yuan J R, Liu J T, Wang T B 2015 Acta Phys. Sin. 64 074101 (in Chinese) [邓新华, 袁吉仁, 刘江涛, 王同标 2015 64 074101]
[6] Withayachumnankul W, Abbott D 2009 IEEE Photon. J. 1 99
[7] Wang Y, Wang X, He X J, Mei J S, Chen M H, Yin J H, Lei Q Q 2012 Acta Phys. Sin. 61 137301 (in Chinese) [王玥, 王暄, 贺训军, 梅金硕, 陈明华, 殷景华, 雷清泉 2012 61 137301]
[8] Mao Q, Wen Q Y, Tian W, Wen T L, Chen, Z, Yang Q H, Zhang H W 2014 Opt. Lett. 39 5649
[9] He J L, Liu P G, He Y L, Hong Z 2012 Appl. Opt. 51 776
[10] Huang Z, Parrott E P J, Park H, Chan H P, Pickwell-MacPherson E 2014 Opt. Lett. 39 793
[11] Chen S, Fan F, Wang X H, Wu P F, Zhang H, Chang S J 2015 Opt. Express 23 1015
[12] Miyamaru F, Hayashi S, Otani C, Kawase K, Ogawa Y, Yoshida H, Kato E 2006 Opt. Lett. 31 1118
[13] Xiao X A, Wu J B, Miyamaru F, Zhang M Y, Li S B, Takeda M W, Wen W J, Sheng P 2011 Appl. Phys. Lett. 98 011911
[14] Sasaki T, Noda K, Kawatsuki N, Ono H 2015 Opt. Lett. 40 1544
[15] Arikawa T, Wang X F, Belyanin A A, Kono J 2012 Opt. Express 20 19484
[16] Kim S, Lim Y, Kim H, Park J, Lee B 2008 Appl. Phys. Lett. 92 013103
[17] Shi H F, Wang C T, Du C L, Luo X G, Dong X C, Gao H T 2005 Opt. Express 13 6815
[18] Meng Q D, Gui L, Zhang X L, Zhang L W, Geng D F, L Y Q 2014 Acta Phys. Sin. 63 118503 (in Chinese) [孟庆端, 贵磊, 张晓玲, 张立文, 耿东峰, 吕衍秋 2014 63 118503]
[19] Guo N, Hu W D, Chen X S, Meng C, L Y Q, Lu W 2011 J. Electron. Mater. 40 1647
[20] Bai J, Hu W D, Guo N, Lei W, L Y Q, Zhang X L, Si J J, Chen X S, Lu W 2014 J. Electron. Mater. 43 2795
[21] Zhu F M, Li X E, Shen L F 2014 Appl. Opt. 53 5896
[22] Li W, Kuang D F, Fan F, Chang S J, Lin L 2012 Appl. Opt. 51 7098
[23] Hu B, Wang Q J, Kok S W, Zhang Y 2012 Plasmonics 7 191
[24] Fan F, Chen S, Wang X H, Chang S J 2013 Opt. Express 21 8614
[25] Hu B, Wang Q J, Zhang Y 2012 Opt. Lett. 37 1895
[26] Halevi P, Ramos-Mendieta F 2000 Phys. Rev. Lett. 85 1875
计量
- 文章访问数: 7262
- PDF下载量: 271
- 被引次数: 0