搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种X射线聚焦光学及其在X射线通信中的应用

刘舵 强鹏飞 李林森 苏桐 盛立志 刘永安 赵宝升

引用本文:
Citation:

一种X射线聚焦光学及其在X射线通信中的应用

刘舵, 强鹏飞, 李林森, 苏桐, 盛立志, 刘永安, 赵宝升

X-ray focusing optics and its application in X-ray communication system

Liu Duo, Qiang Peng-Fei, Li Lin-Sen, Su Tong, Sheng Li-Zhi, Liu Yong-An, Zhao Bao-Sheng
PDF
导出引用
  • 基于栅控脉冲发射X射线源与单光子探测技术的X射线通信已经实现了实验室语音通信验证, 并对通信系统的误码率性能进行了分析, 为探索未来X射线深空应用打下了坚实的基础. 针对目前X射线通信面临的信号发散角大、通信距离短、难以实现工程化应用的情况, 迫切需要 对X射线通信天线系统进行深入研究. 为了提高信号增益、增大X射线通信的距离, 提出了多层嵌套式X射线聚焦光学作为X射线通信的 收发天线, 理论分析了X射线聚焦光学用于X射线通信收发天线的可行性, 分析了X射线聚焦光学的理论基础与结构设计, 对发射天线发散角、接收天线有效面积与焦斑尺寸、信号增益等性能做了探讨. 结果表明: 在信号发射端, 天线的发散角为3 mrad左右, 发射增益23 dB; 在信号接收端, 接收天线的有效面积5700 mm2@1.5 keV, 焦斑直径为4.5 mm, 接收增益为25 dB, 通信系统总的增益可达48 dB.
    X-ray communication, which was first introduced by Keith Gendreau in 2007, is potential to compete with conventional communication methods, such as microware and laser communication, against space surroundings. Researchers have spent much time and effort on the mission making the initial idea into reality in recent years. Eventually, the X-ray communication demonstration system based on the grid-controlled X-ray source and single-photon detection technique can deliver both audio and video information in a 6-meter vacuum tunnel, and the bit-error-rate performance of the communication system is analyzed. But it is difficult to implement applications in industries. The point is to find a way to reduce the signal divergence geometrical attenuation and increase the distance of the communication which can be regarded as an important foundation of future deep-space X-ray communication applications. Therefore, it is urgent to study the X-ray communication system. By using a nested X-ray focusing optics as transmitting and receiving antennas of the communication system, the signal gain and the distance of X-ray communication can be greatly improved. Specifically, the nested X-ray focusing optics is similar to the Wolter type I telescope, which is widely used in the field of X-ray astronomy. The difference between them is that the Wolter type I optics is originally proposed based on a paraboloid mirror and a hyperboloid mirror, but X-ray focusing optics, the simplified Wolter type I optics, provides a single reflection by a conical approximation mirror, and it is more suitable for X-ray communication. In this paper, aiming at the future demand of X-ray communication, the optimization and analysis of the nested X-ray focusing optics are carried out, and the recurrence relations between the layers of mirrors are derived. Reasonable initial structural parameters and structure of the optics are designed. In addition, the theoretical effective collection area is calculated. Feasibility of using the X-ray focusing optics as transmitting and receiving antennas is analyzed, and the theory and structural design of the X-ray focusing optical are discussed. Signal divergence of transmitting antenna, effective area of receiving antenna, the focal spot size, and the signal gain properties are preliminary studied. The results show that the signal divergence is about 3 mrad, and the transmit gain is 23 dB; the effective area of receiving antenna is 5700 mm2 at 1.5 keV. Moreover, the focal spot diameter and the receive gain are 4.5 mm and 25 dB, respectively, and the total gain of this communication system can reach up to 48 dB.
      通信作者: 赵宝升, open@opt.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61471357)和中国科学院西部之光基金资助的课题.
      Corresponding author: Zhao Bao-Sheng, open@opt.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61471357) and the West Light Foundation of the Chinese Academy Sciences.
    [1]

    Bass M 2010 Handbook of Optics (3rd Ed.) (Columbus: The McGraw-Hill Companies) p791

    [2]

    Next-Generation Communications, Keith Gendreau https://gsfctechnology.gsfc.nasa.gov/TechSheets/XRAY_Goddard_Final. pdf [2015-10-13]

    [3]

    Zhao B S, Wu C X, Sheng L Z, Liu Y A 2013 Acta Photon. Sin. 42 801 (in Chinese) [赵宝升, 吴川行, 盛立志, 刘永安 2013 光子学报 42 801]

    [4]

    Deng N Q, Zhao B S, Sheng L Z, Yan Q R, Yang H, Liu D 2013 Acta Phys. Sin. 62 060705 (in Chinese) [邓宁勤, 赵宝升, 盛立志, 鄢秋荣, 杨灏, 刘舵 2013 62 060705]

    [5]

    Wang L Q, Su T, Zhao B S, Sheng L Z, Liu Y A, Liu D 2015 Acta Phys. Sin. 64 120701 (in Chinese) [王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵 2015 64 120701]

    [6]

    Li Y D, Lin X Y, He J L, Guo F, Sun T X, Liu P 2013 Chin. Phys. B 22 044103

    [7]

    Ke X Z, Xi X L 2004 The Introduction of Wireless Laser Communication (Beijing: Beijing University of Posts And Telecommunicaitons Press) (in Chinese) [柯熙政, 席晓莉 2004 无线激光通信概论 (北京: 北京邮电大学出版社)]

    [8]

    Wolter H 1952 Annalen der Physik 445 115

    [9]

    Zhang W W 2009 Proc. SPIE 7437 74370N

    [10]

    Balsamo E, Gendreau K, Arzoumanian Z, Okajima T, et al. 2013 Proc. SPIE 8861 88611M

    [11]

    Sun K X, Yi R Q, Yang G H, Jiang S E, Cui Y L, Liu S Y, Ding Y K 2004 Acta Phys. Sin. 53 1099 (in Chinese) [孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤 2004 53 1099]

    [12]

    Hu J S, Zhao L L, Li X 2005 J. Optoelectron. Laser 16 534 (in Chinese) [胡家升, 赵玲玲, 李祥 2005 光电子$激光 16 534]

  • [1]

    Bass M 2010 Handbook of Optics (3rd Ed.) (Columbus: The McGraw-Hill Companies) p791

    [2]

    Next-Generation Communications, Keith Gendreau https://gsfctechnology.gsfc.nasa.gov/TechSheets/XRAY_Goddard_Final. pdf [2015-10-13]

    [3]

    Zhao B S, Wu C X, Sheng L Z, Liu Y A 2013 Acta Photon. Sin. 42 801 (in Chinese) [赵宝升, 吴川行, 盛立志, 刘永安 2013 光子学报 42 801]

    [4]

    Deng N Q, Zhao B S, Sheng L Z, Yan Q R, Yang H, Liu D 2013 Acta Phys. Sin. 62 060705 (in Chinese) [邓宁勤, 赵宝升, 盛立志, 鄢秋荣, 杨灏, 刘舵 2013 62 060705]

    [5]

    Wang L Q, Su T, Zhao B S, Sheng L Z, Liu Y A, Liu D 2015 Acta Phys. Sin. 64 120701 (in Chinese) [王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵 2015 64 120701]

    [6]

    Li Y D, Lin X Y, He J L, Guo F, Sun T X, Liu P 2013 Chin. Phys. B 22 044103

    [7]

    Ke X Z, Xi X L 2004 The Introduction of Wireless Laser Communication (Beijing: Beijing University of Posts And Telecommunicaitons Press) (in Chinese) [柯熙政, 席晓莉 2004 无线激光通信概论 (北京: 北京邮电大学出版社)]

    [8]

    Wolter H 1952 Annalen der Physik 445 115

    [9]

    Zhang W W 2009 Proc. SPIE 7437 74370N

    [10]

    Balsamo E, Gendreau K, Arzoumanian Z, Okajima T, et al. 2013 Proc. SPIE 8861 88611M

    [11]

    Sun K X, Yi R Q, Yang G H, Jiang S E, Cui Y L, Liu S Y, Ding Y K 2004 Acta Phys. Sin. 53 1099 (in Chinese) [孙可煦, 易荣清, 杨国洪, 江少恩, 崔延莉, 刘慎业, 丁永坤 2004 53 1099]

    [12]

    Hu J S, Zhao L L, Li X 2005 J. Optoelectron. Laser 16 534 (in Chinese) [胡家升, 赵玲玲, 李祥 2005 光电子$激光 16 534]

  • [1] 苏剑宇, 方海燕, 包为民, 孙海峰, 赵良. 航天器处X射线脉冲星观测信号模拟方法.  , 2022, 71(22): 229701. doi: 10.7498/aps.71.20221097
    [2] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计.  , 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [3] 李瑶, 苏桐, 雷凡, 徐能, 盛立志, 赵宝升. 等离子体中X射线透过率分析及潜在通信应用研究.  , 2019, 68(4): 040401. doi: 10.7498/aps.68.20181973
    [4] 彭星, 孔令豹. 基于室内可见光通信技术的新型两级光学接收天线设计与分析.  , 2018, 67(9): 094201. doi: 10.7498/aps.67.20172341
    [5] 薛梦凡, 李小平, 孙海峰, 刘兵, 方海燕, 沈利荣. 一种新的X射线脉冲星信号模拟方法.  , 2015, 64(21): 219701. doi: 10.7498/aps.64.219701
    [6] 王云, 蓝天, 李湘, 沈振民, 倪国强. 复合抛物面聚光器作为可见光通信光学天线的设计研究与性能分析.  , 2015, 64(12): 124212. doi: 10.7498/aps.64.124212
    [7] 陈直, 许良, 陈荣昌, 杜国浩, 邓彪, 谢红兰, 肖体乔. Kinoform单透镜的硬X射线聚焦性能.  , 2015, 64(16): 164104. doi: 10.7498/aps.64.164104
    [8] 张逸伦, 蓝天, 高明光, 赵涛, 沈振民. 二级级联式室内可见光通信光学接收天线设计.  , 2015, 64(16): 164201. doi: 10.7498/aps.64.164201
    [9] 王律强, 苏桐, 赵宝升, 盛立志, 刘永安, 刘舵. X射线通信系统的误码率分析.  , 2015, 64(12): 120701. doi: 10.7498/aps.64.120701
    [10] 马晓飞, 赵宝升, 盛立志, 刘永安, 刘舵, 邓宁勤. 用于空间X射线通信的栅极控制脉冲发射源研究.  , 2014, 63(16): 160701. doi: 10.7498/aps.63.160701
    [11] 孙海峰, 谢楷, 李小平, 方海燕, 刘秀平, 傅灵忠, 孙海建, 薛梦凡. 高稳定度X射线脉冲星信号模拟.  , 2013, 62(10): 109701. doi: 10.7498/aps.62.109701
    [12] 邓宁勤, 赵宝升, 盛立志, 鄢秋荣, 杨颢, 刘舵. 基于X射线的空间语音通信系统.  , 2013, 62(6): 060705. doi: 10.7498/aps.62.060705
    [13] 谢强, 许录平, 张华, 罗楠. X射线脉冲星累积轮廓建模及信号辨识.  , 2012, 61(11): 119701. doi: 10.7498/aps.61.119701
    [14] 周亚训, 於杏燕, 徐星辰, 戴世勋. 掺铒硫系玻璃的制备及其微结构光纤的中红外信号放大特性研究.  , 2012, 61(15): 157701. doi: 10.7498/aps.61.157701
    [15] 张华, 许录平, 谢强, 罗楠. 基于Bayesian估计的X射线脉冲星微弱信号检测.  , 2011, 60(4): 049701. doi: 10.7498/aps.60.049701
    [16] 马天鹏, 胡立群, 陈开云. 通过软X射线信号研究芯部等离子体的结构.  , 2009, 58(2): 1110-1114. doi: 10.7498/aps.58.1110
    [17] 高 玮, 吕志伟, 何伟明, 董永康. 水中受激布里渊散射微弱Stokes信号光的高增益放大.  , 2008, 57(4): 2248-2252. doi: 10.7498/aps.57.2248
    [18] 陈 敏, 肖体乔, 骆玉宇, 刘丽想, 魏 逊, 杜国浩, 徐洪杰. 微聚焦管硬x射线位相衬度成像.  , 2004, 53(9): 2953-2957. doi: 10.7498/aps.53.2953
    [19] 张启仁, 蔡玉琴, 淳于书泰, 黄文忠, 洪伟, 杨上金, 杜凤英, 尤永禄, 孙永良, 何安, 庄秀群, 武德勇. 双脉冲驱动锗薄膜靶高增益X射线激光实验.  , 1995, 44(9): 1404-1409. doi: 10.7498/aps.44.1404
    [20] 何绍堂, 何安, 淳于书泰, 沈华忠. 类氖锗的X射线激光增益及其传输特性研究.  , 1990, 39(11): 1751-1757. doi: 10.7498/aps.39.1751
计量
  • 文章访问数:  7489
  • PDF下载量:  343
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-29
  • 修回日期:  2015-09-15
  • 刊出日期:  2016-01-05

/

返回文章
返回
Baidu
map