搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑车与车互联通讯技术的交通流跟驰模型

华雪东 王炜 王昊

引用本文:
Citation:

考虑车与车互联通讯技术的交通流跟驰模型

华雪东, 王炜, 王昊

A car-following model with the consideration of vehicle-to-vehicle communication technology

Hua Xue-Dong, Wang Wei, Wang Hao
PDF
导出引用
  • 基于Newell跟驰模型, 建立考虑车与车互联(vehicle-to-vehicle, V2V)通讯技术的单车道跟驰模型. 根据V2V技术的特征, 引入参数以表征驾驶员在收到V2V技术所提供的实时交通信息后的提前反应程度. 根据线性稳定分析方法, 得到V2V跟驰模型的中性稳定条件. 通过计算机的模拟, 研究V2V技术对交通流运行的影响, 分析小扰动下V2V跟驰模型对参数变化的敏感性, 研究不同 取值下交通流密度波及迟滞回环的变化. 研究发现: 1)与全速度差跟驰模型相比, 在引入V2V后, 交通流在加速起步、减速刹车及遇到突发事件时, 车辆运行的安全性和舒适性均得到不同程度的提升; 2) V2V跟驰模型对参数 及T的变化较为敏感, 且在交通流较为拥堵时, V2V技术的引入可以提升交通流的平均速度; 3)参数 的增大、T 的减小可以有效提升V2V跟驰模型在不同交通环境下的运行稳定性. 由于可以实时地获取交通流运行的状态并针对性地改变车辆自身的运行, V2V交通流跟驰模型提升了交通流运行的稳定性.
    Recently, the research on traffic flow system based on some classical models, such as cellular automata and car-following models, has attracted much attention. Some meaningful achievements have been obtained in the past few years by scholars from various fields. This paper starts with literature review on traffic flow theory studies. Car-following models, including the initial model proposed by Newell in 1961 (Newell G F 1961 Oper. Res. 9 209) and some later modified ones (e.g. full velocity difference model, or FVD model for short) have been deeply investigated. Based on Newell's car-following model, an extension of car-following model with consideration of vehicle-to-vehicle (V2V) communication is then developed. The vehicle-to-vehicle communication technology, which was proposed in the early 2000s, enable vehicles to collect traffic condition information from other vehicles (e.g. speed, headway, position, acceleration, etc.) and provide them for drivers in almost real time. Compared with those without V2V devices, drivers with information from V2V devices can react to traffic flow fluctuation timelier and more precisely. To represent the pre-reaction of drivers to traffic flow information provided by V2V devices, a parameter, , is newly introduced into Newell's car-following model. Then by second-order Taylor series expansion, a new car-following model with the influence of V2V (called V2V model) is proposed. Neutral stability condition of V2V model as well as phase diagram is derived theoretically with linear analysis method. The phase diagram of linear stability condition is divided into stable and unstable regions. By analyzing stability performance of the proposed model, it is evident that V2V communication technology can improve the stability of traffic flow system. Numerical simulation is demonstrated to study the influence of V2V devices on traffic flow on the one hand, and to acquire density waves as well as hysteresis loops under different values of parameter on the other hand. The sensitive analysis method are adopted as well.The numerical simulation results indicate that: 1) when compared with FVD model, V2V model can make vehicles react to traffic flow fluctuation earlier and reduce the speed changes under start-up, brake and incident conditions; this indicates that the consideration of V2V devices can improve the safety and ride comfort of traffic flow system; 2) the V2V model is sensitive to the value changes of parameter and T; the stability of traffic flow can be improved if the value of parameter increases, or parameter T decreases; this outcome precisely agrees with the above theoretical analysis; 3) the characteristics of traffic flow can influence the performance of V2V technology: compared with under low density condition, V2V communication technology can significantly increase the average speed of traffic flow under high density condition.
      通信作者: 王炜, wangwei@seu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB725402)、国家自然科学基金重点项目(批准号: 51338003)、国家自然科学基金(批准号: 51478113)和东南大学优秀博士学位论文基金(批准号: YBJJ1345)资助的课题.
      Corresponding author: Wang Wei, wangwei@seu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB725402), the Key Program of the National Natural Science Foundation of China (Grant No. 51338003), the National Natural Science Foundation of China (Grant No. 51478113), and the Scientific Research Foundation of Graduate School of Southeast University, China (Grant No. YBJJ1345).
    [1]

    Hua X D, Wang W, Wang H 2011 Acta Phys. Sin. 60 084502 (in Chinese) [华雪东, 王炜, 王昊 2011 60 084502]

    [2]

    Chowdhury D, Santen L, Schadschneider A 2000 Phys. Rep. 329 199

    [3]

    Helbing D 2001 Rev. Mod. Phys. 73 1067

    [4]

    Tang T Q, Shi W F, Shang H Y, Wang Y P 2014 Nonlinear Dyn. 76 2017

    [5]

    Lighthill M J, Whitham G B 1955 Proc. Roy. Soc. Ser. A 22 317

    [6]

    Richards P I 1956 Oper. Res. 4 42

    [7]

    Pipes L A 1969 Transpn. Res. 3 229

    [8]

    Payne H J 1971 Models of Freeway Traffic and Control: Mathematical Models of Public Systems 1 51

    [9]

    Kuhne R D 1984 Proceeding 9th International Symposium on Transportation and Traffic Theory Delft, Netherlands, July 11-13, 1984 p21

    [10]

    Jiang R, Wu Q S, Zhu Z J 2002 Transp. Res. B 36 405

    [11]

    Xue Y, Dai S Q 2003 Phys. Rev. E 68 066123

    [12]

    Tang T Q, Caccetta L, Wu Y H, Huang H J, Yang X B 2014 J. Adv. Transp. 48 304

    [13]

    Tang T Q, Shi W F, Yang X B, Wang Y P, Lu G Q 2013 Physica A 392 6300

    [14]

    Peng G H, Song W, Peng Y J, Wang S H 2014 Physica A 398 76

    [15]

    Redhu P, Gupta A K 2015 Physica A 421 249

    [16]

    Gupta A K, Sharma S 2010 Chin. Phys. B 19 110503

    [17]

    Gupta A K, Sharma S 2012 Chin. Phys. B 21 015201

    [18]

    Peng G H, Cai X H, Cao B F, Liu C Q 2012 Physica A 391 656

    [19]

    He Z C, Sun W B 2013 Acta Phys. Sin. 62 108901 (in Chinese) [何兆成, 孙文博 2013 62 108901]

    [20]

    Tang T Q, He J, Yang S C, Shang H Y 2014 Physica A 413 583

    [21]

    Yu L, Shi Z K, Li T 2014 Phys. Lett. A 378 348

    [22]

    Ge H X, Meng X P, Zhu H B, Li Z P 2014 Physica A 408 28

    [23]

    Koutsopoulos H N, Farah H 2012 Transp. Res. B 46 563

    [24]

    Ge H X, Yu J, Lo S M 2012 Chin. Phys. Lett. 29 50502

    [25]

    Ge H X 2011 Chin. Phys. B 20 090502

    [26]

    Zhou T, Sun L H, Zhao M, Li H M 2013 Chin. Phys. B 22 090205

    [27]

    Punzo V, Ciuffo B, Montanino M 2012 Transp. Res. Rec. 2315 11

    [28]

    Lakouari N, Bentaleb K, Ez-Zahraouy H, Benyoussef A 2015 Physica A 439 132

    [29]

    Yang D, Qiu X P, Yu D, Sun R X, Pu Y 2015 Physica A 424 62

    [30]

    Jing M, Deng W, Wang H, Ji Y J 2012 Acta Phys. Sin. 61 244502 (in Chinese) [敬明, 邓卫, 王昊, 季彦婕 2012 61 244502]

    [31]

    Feng S M, Li J Y, Ding N, Nie C 2015 Physica A 428 90

    [32]

    Lrraga M E, Alvarez-Icaza L 2014 Chin. Phys. B 23 050701

    [33]

    Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P, Wang H L 2010 Chin. Phys. B 19 048201

    [34]

    Ez-Zahraouyt H, Jetto K, Benyoussef A 2006 Chin. J. Phys. 44 486

    [35]

    Gazis D C, Herman R, Potts R B 1959 Oper. Res. 7 499

    [36]

    Newell G F 1961 Oper. Res. 9 209

    [37]

    Herman R, Montroll E W, Potts R B, Rothery R W 1959 Oper. Res. 7 86

    [38]

    Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y 1995 Phys. Rev. E 51 1035

    [39]

    Jiang R, Wu Q S, Zhu Z J 2001 Phys. Rev. 64 017101

    [40]

    Knorr F, Schreckenberg M 2012 Physica A 391 2225

    [41]

    Jin W L, Recker W W 2006 Transp. Res. B 40 230

    [42]

    Kerner B S, Klenov S L, Brakemeier A 2008 Intelligent Vehicles Symposium (IEEE) Eindhoven, Netherlands, June 4-6, 2008 p180

    [43]

    Ngoduy D, Hoogendoorn S P, Liu R 2009 Physica A 388 2705

    [44]

    Helbing D, Tilch B 1998 Phys. Rev. E 58 133

    [45]

    Zhou J 2015 Nonlinear Dyn. 81 549

    [46]

    Zhao X, Gao Z Y 2005 Eur. Phys. J. B 47 145

    [47]

    Zhao X, Gao Z Y 2007 Physica A 375 679

  • [1]

    Hua X D, Wang W, Wang H 2011 Acta Phys. Sin. 60 084502 (in Chinese) [华雪东, 王炜, 王昊 2011 60 084502]

    [2]

    Chowdhury D, Santen L, Schadschneider A 2000 Phys. Rep. 329 199

    [3]

    Helbing D 2001 Rev. Mod. Phys. 73 1067

    [4]

    Tang T Q, Shi W F, Shang H Y, Wang Y P 2014 Nonlinear Dyn. 76 2017

    [5]

    Lighthill M J, Whitham G B 1955 Proc. Roy. Soc. Ser. A 22 317

    [6]

    Richards P I 1956 Oper. Res. 4 42

    [7]

    Pipes L A 1969 Transpn. Res. 3 229

    [8]

    Payne H J 1971 Models of Freeway Traffic and Control: Mathematical Models of Public Systems 1 51

    [9]

    Kuhne R D 1984 Proceeding 9th International Symposium on Transportation and Traffic Theory Delft, Netherlands, July 11-13, 1984 p21

    [10]

    Jiang R, Wu Q S, Zhu Z J 2002 Transp. Res. B 36 405

    [11]

    Xue Y, Dai S Q 2003 Phys. Rev. E 68 066123

    [12]

    Tang T Q, Caccetta L, Wu Y H, Huang H J, Yang X B 2014 J. Adv. Transp. 48 304

    [13]

    Tang T Q, Shi W F, Yang X B, Wang Y P, Lu G Q 2013 Physica A 392 6300

    [14]

    Peng G H, Song W, Peng Y J, Wang S H 2014 Physica A 398 76

    [15]

    Redhu P, Gupta A K 2015 Physica A 421 249

    [16]

    Gupta A K, Sharma S 2010 Chin. Phys. B 19 110503

    [17]

    Gupta A K, Sharma S 2012 Chin. Phys. B 21 015201

    [18]

    Peng G H, Cai X H, Cao B F, Liu C Q 2012 Physica A 391 656

    [19]

    He Z C, Sun W B 2013 Acta Phys. Sin. 62 108901 (in Chinese) [何兆成, 孙文博 2013 62 108901]

    [20]

    Tang T Q, He J, Yang S C, Shang H Y 2014 Physica A 413 583

    [21]

    Yu L, Shi Z K, Li T 2014 Phys. Lett. A 378 348

    [22]

    Ge H X, Meng X P, Zhu H B, Li Z P 2014 Physica A 408 28

    [23]

    Koutsopoulos H N, Farah H 2012 Transp. Res. B 46 563

    [24]

    Ge H X, Yu J, Lo S M 2012 Chin. Phys. Lett. 29 50502

    [25]

    Ge H X 2011 Chin. Phys. B 20 090502

    [26]

    Zhou T, Sun L H, Zhao M, Li H M 2013 Chin. Phys. B 22 090205

    [27]

    Punzo V, Ciuffo B, Montanino M 2012 Transp. Res. Rec. 2315 11

    [28]

    Lakouari N, Bentaleb K, Ez-Zahraouy H, Benyoussef A 2015 Physica A 439 132

    [29]

    Yang D, Qiu X P, Yu D, Sun R X, Pu Y 2015 Physica A 424 62

    [30]

    Jing M, Deng W, Wang H, Ji Y J 2012 Acta Phys. Sin. 61 244502 (in Chinese) [敬明, 邓卫, 王昊, 季彦婕 2012 61 244502]

    [31]

    Feng S M, Li J Y, Ding N, Nie C 2015 Physica A 428 90

    [32]

    Lrraga M E, Alvarez-Icaza L 2014 Chin. Phys. B 23 050701

    [33]

    Qian Y S, Shi P J, Zeng Q, Ma C X, Lin F, Sun P, Wang H L 2010 Chin. Phys. B 19 048201

    [34]

    Ez-Zahraouyt H, Jetto K, Benyoussef A 2006 Chin. J. Phys. 44 486

    [35]

    Gazis D C, Herman R, Potts R B 1959 Oper. Res. 7 499

    [36]

    Newell G F 1961 Oper. Res. 9 209

    [37]

    Herman R, Montroll E W, Potts R B, Rothery R W 1959 Oper. Res. 7 86

    [38]

    Bando M, Hasebe K, Nakayama A, Shibata A, Sugiyama Y 1995 Phys. Rev. E 51 1035

    [39]

    Jiang R, Wu Q S, Zhu Z J 2001 Phys. Rev. 64 017101

    [40]

    Knorr F, Schreckenberg M 2012 Physica A 391 2225

    [41]

    Jin W L, Recker W W 2006 Transp. Res. B 40 230

    [42]

    Kerner B S, Klenov S L, Brakemeier A 2008 Intelligent Vehicles Symposium (IEEE) Eindhoven, Netherlands, June 4-6, 2008 p180

    [43]

    Ngoduy D, Hoogendoorn S P, Liu R 2009 Physica A 388 2705

    [44]

    Helbing D, Tilch B 1998 Phys. Rev. E 58 133

    [45]

    Zhou J 2015 Nonlinear Dyn. 81 549

    [46]

    Zhao X, Gao Z Y 2005 Eur. Phys. J. B 47 145

    [47]

    Zhao X, Gao Z Y 2007 Physica A 375 679

  • [1] 叶欣, 单彦广. 疏水表面振动液滴模态演化与流场结构的数值模拟.  , 2021, 70(14): 144701. doi: 10.7498/aps.70.20210161
    [2] 杨温渊, 董烨, 孙会芳, 董志伟. 磁绝缘线振荡器中模式竞争的物理分析和数值模拟.  , 2020, 69(19): 198401. doi: 10.7498/aps.69.20200383
    [3] 左娟莉, 杨泓, 魏炳乾, 侯精明, 张凯. 气力提升系统气液两相流数值模拟分析.  , 2020, 69(6): 064705. doi: 10.7498/aps.69.20191755
    [4] 杨玉晶, 赵汗青, 王鹏飞, 林婷婷. 绝热脉冲磁共振地下水探测技术数值模拟及影响分析.  , 2020, 69(12): 123301. doi: 10.7498/aps.69.20200015
    [5] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟.  , 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [6] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析.  , 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [7] 周剑宏, 童宝宏, 王伟, 苏家磊. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟.  , 2018, 67(11): 114701. doi: 10.7498/aps.67.20180133
    [8] 蒋勇, 贺少勃, 袁晓东, 王海军, 廖威, 吕海兵, 刘春明, 向霞, 邱荣, 杨永佳, 郑万国, 祖小涛. CO2激光光栅式扫描修复熔石英表面缺陷的实验研究与数值模拟.  , 2014, 63(6): 068105. doi: 10.7498/aps.63.068105
    [9] 曾友志, 张宁. 最相邻后车综合信息对交通流不稳定性的影响分析.  , 2014, 63(21): 218901. doi: 10.7498/aps.63.218901
    [10] 葛红霞, 崔煜, 程荣军. 考虑前后车效应的反馈控制跟驰模型.  , 2014, 63(11): 110504. doi: 10.7498/aps.63.110504
    [11] 曾友志, 张宁, 刘利娟. 考虑司机扰动风险偏好异质的跟驰模型.  , 2014, 63(6): 068901. doi: 10.7498/aps.63.068901
    [12] 叶晶晶, 李克平, 金新民. 基于跟驰模型列车运行优化控制模拟研究.  , 2014, 63(7): 070202. doi: 10.7498/aps.63.070202
    [13] 陈石, 王辉, 沈胜强, 梁刚涛. 液滴振荡模型及与数值模拟的对比.  , 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [14] 袁娜, 化存才. 多前车速度差的车辆跟驰模型的稳定性与孤波.  , 2012, 61(16): 160509. doi: 10.7498/aps.61.160509
    [15] 张立东, 贾磊, 朱文兴. 弯道交通流跟驰建模与稳定性分析.  , 2012, 61(7): 074501. doi: 10.7498/aps.61.074501
    [16] 任淮辉, 李旭东. 三维材料微结构设计与数值模拟.  , 2009, 58(6): 4041-4052. doi: 10.7498/aps.58.4041
    [17] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析.  , 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [18] 江慧丰, 张青川, 陈学东, 范志超, 陈忠家, 伍小平. 位错与溶质原子间动态相互作用的数值模拟研究.  , 2007, 56(6): 3388-3392. doi: 10.7498/aps.56.3388
    [19] 陈 漩, 高自友, 赵小梅, 贾 斌. 反馈控制双车道跟驰模型研究.  , 2007, 56(4): 2024-2029. doi: 10.7498/aps.56.2024
    [20] 薛 郁. 随机计及相对速度的交通流跟驰模型.  , 2003, 52(11): 2750-2756. doi: 10.7498/aps.52.2750
计量
  • 文章访问数:  9629
  • PDF下载量:  608
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-09-01
  • 修回日期:  2015-10-13
  • 刊出日期:  2016-01-05

/

返回文章
返回
Baidu
map