搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于铯原子内态操控的双光子拉曼激光的产生及应用

王志辉 田亚莉 李刚 张天才

引用本文:
Citation:

用于铯原子内态操控的双光子拉曼激光的产生及应用

王志辉, 田亚莉, 李刚, 张天才

Generation and application of two-photon Raman laser for manipulation of internal state of Cs atom

Wang Zhi-Hui, Tian Ya-Li, Li Gang, Zhang Tian-Cai
PDF
导出引用
  • 双光子拉曼过程是一种有效制备和控制原子内态的方法, 在原子内态操控和基于原子的量子信息处理中具有重要意义. 研制用于特定原子的拉曼激光是实现该过程的重要一步. 报道了利用光纤波导相位调制器及滤波器等实现用于铯原子内态操控的拉曼激光的方法, 并成功用于单个铯原子的内态精密操控. 通过4.6 GHz的微波信号源直接驱动波导相位调制器高效地获得光场的调制边带, 并利用自由光谱区为9.19 GHz的法布里-珀罗腔将载波及二阶边带滤掉, 获得了频率精确、相差9.19 GHz的拉曼激光. 经过基于光纤振幅调制器的功率稳定系统, 最终可以获得总功率为73 μupW、长时间内波动为2.2%的拉曼激光束, 并将此光束用于激发单个铯原子, 实现了|6S1/2, F=4, mF=0和|6S1/2, F=3, mF=0 之间的可控拉比操作.
    Two-photon Raman process (TPRP) is an important technique in controlling the atomic internal states. It plays an important role in quantum manipulation and quantum information process. A reliable Raman laser for specific atom is the first step to demonstrate TPRP and quantum manipulation of an atom. In this paper, we theoretically analyze the two-photon Raman process regarding to Cesium “clock states” |6S1/2, F=4, mF=0 and |6S1/2, F=3, mF=0, and we obtain the dependences of the corresponding Rabi frequency on one-and two-photon detunings and one-photon Rabi frequencies in a realistic multi-level Cesium atom system. We find that to obtain an atom state flopping efficiency of 0.99 the Raman laser power fluctuation should be controlled to be smaller than 3.2%. We also report our simple experimental Raman laser system for TPRP of Cesium atom based on a fiber waveguide phase modulator. The phase modulator is driven by a 4.6 GHz microwave source and the two first-order sidebands with a frequency difference of 9.19 GHz are filtered out by a Fabry-Pérot cavity with a finesse of 48. After an amplitude-modulator-based intensity stabilization system, a total power of 73 μupW with a fluctuation of 2.2% within 90 min is obtained. By applying this Raman laser to a single Cesium atom trapped in a micrometer size far-off resonant trap (FORT), we obtain Raman spectra between Cesium “clock states” |6S1/2, F=4, mF=0 and |6S1/2, F=3, mF=0. The discrepancy between the two-photon resonance frequency and the defined clock frequency 9.192631770 GHz is due to the differential Stark shifts by FORT beam and Raman beams as well as the inaccuracy of the microwave source. By varying the Raman pulse length we also show the corresponding Rabi flopping with a rate of 153 kHz, which is consistent with the theoretical calculation. The obtained state transfer efficiency of 0.75 is much smaller than theoretical expectation 0.99, which is mainly limited by the state initialization efficiency. The Raman laser system reported in this paper is simple and reliable to realize and it provides a reliable method to manipulate the Cesium internal state. Moreover it could also be easily extended to other system for quantum manipulation of other species of atom.
      通信作者: 李刚, gangli@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11125418, 91336107, 61275210, 61227902)和国家重点基础研究发展计划(批准号: 2012CB921601)资助的课题.
      Corresponding author: Li Gang, gangli@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11125418, 91336107, 61275210, 61227902) and the National Basic Research Program of China (Grant No. 2012CB921601).
    [1]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A, Meschede D 2003 Phys. Rev. A 21 213002

    [2]

    Khudaverdyan M, Alt W, Dotsenko I, Förster L, Kuhr S, Meschede D, Miroshnychenko Y, Schrader D, Rauschenbeutel A 2005 Phys. Rev. A 71 031404

    [3]

    Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G, Saffman M 2006 Phys. Rev. Lett. 96 063001

    [4]

    Jones M P A, Beugnon J, Gaëtan A, Zhang J, Messin G, Browaeys A, Grangier P 2007 Phys. Rev. A 75 040301(R)

    [5]

    Li G, Zhang S, Isenhower L, Maller K, Saffman M 2012 Opt. Lett. 37 851

    [6]

    Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67

    [7]

    Vo C, Riedl S, Baur S, Rempe G, Drr S 2012 Phys. Rev. Lett. 109 263602

    [8]

    Sangouard N, Guérin S, Yatsenko L P, Halfmann T 2004 Phys. Rev. A 70 013415

    [9]

    Jin S Q, Gong S Q, Li R X, Xu Z Z 2004 Phys. Rev. A 69 023408

    [10]

    Li Z H, Li G, Zhang Y C, Zhang P F, Zhao D M, Guo Y Q, Wang J M, Zhang T C 2011 Acta Optica Sinica 31 0102002 (in Chinese) [李卓恒, 李刚, 张玉驰, 张鹏飞, 赵冬梅, 郭龑强, 王军民, 张天才 2011 光学学报 31 0102002]

    [11]

    Bouyer P, Gustavson T L, Haritos K G, Kasevich M A 1993 Opt. Lett. 18 649

    [12]

    Szymaniec K, Ghezali S, Coghnet L, Clairon A 1997 Opt. Commun. 144 51

    [13]

    Liu S P, Zhang Y C, Zhang P F, Li G, Wang J M, Zhang T C 2009 Acta Phys. Sin. 58 285(in Chinese) [刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才 2009 58 285]

    [14]

    Zhang Y C, Wang X Y, Li G, Wang J M, Zhang T C 2007 Acta Phys. Sin. 56 2202(in Chinese) [张玉驰, 王晓勇, 李刚, 王军民, 张天才 2007 56 2202]

    [15]

    Zhang Y F, Li G, Zhang Y C, Zhang P F, Wang J M, Zhang T C 2011 Acta Phys. Sin. 60 104206(in Chinese) [张艳峰, 李刚, 张玉驰, 张鹏飞, 王军民, 张天才 2011 60 104206]

    [16]

    Frese D, Ueberholz B, Kuhr S, Alt W, Schrader D, Gomer V, Meschede D 2000 Phys. Rev. Lett. 85 3777

    [17]

    Snadden M J, Clarke R B M, Riis E 1997 Opt. Lett. 22 892

    [18]

    Santarelli G, Clairon A, Lea S N, Tino G 1994 Opt. Commun. 104 339

    [19]

    Grimm R , Weidemuller M 1999 arxiv: Physics 9902072

    [20]

    Guo Y Q, Li G, Zhang Y F, Zhang P F, Wang J M, Zhang T C 2012 Sci. China: Phys. Mech. Astron. 55 1523

  • [1]

    Kuhr S, Alt W, Schrader D, Dotsenko I, Miroshnychenko Y, Rosenfeld W, Khudaverdyan M, Gomer V, Rauschenbeutel A, Meschede D 2003 Phys. Rev. A 21 213002

    [2]

    Khudaverdyan M, Alt W, Dotsenko I, Förster L, Kuhr S, Meschede D, Miroshnychenko Y, Schrader D, Rauschenbeutel A 2005 Phys. Rev. A 71 031404

    [3]

    Yavuz D D, Kulatunga P B, Urban E, Johnson T A, Proite N, Henage T, Walker T G, Saffman M 2006 Phys. Rev. Lett. 96 063001

    [4]

    Jones M P A, Beugnon J, Gaëtan A, Zhang J, Messin G, Browaeys A, Grangier P 2007 Phys. Rev. A 75 040301(R)

    [5]

    Li G, Zhang S, Isenhower L, Maller K, Saffman M 2012 Opt. Lett. 37 851

    [6]

    Choi K S, Deng H, Laurat J, Kimble H J 2008 Nature 452 67

    [7]

    Vo C, Riedl S, Baur S, Rempe G, Drr S 2012 Phys. Rev. Lett. 109 263602

    [8]

    Sangouard N, Guérin S, Yatsenko L P, Halfmann T 2004 Phys. Rev. A 70 013415

    [9]

    Jin S Q, Gong S Q, Li R X, Xu Z Z 2004 Phys. Rev. A 69 023408

    [10]

    Li Z H, Li G, Zhang Y C, Zhang P F, Zhao D M, Guo Y Q, Wang J M, Zhang T C 2011 Acta Optica Sinica 31 0102002 (in Chinese) [李卓恒, 李刚, 张玉驰, 张鹏飞, 赵冬梅, 郭龑强, 王军民, 张天才 2011 光学学报 31 0102002]

    [11]

    Bouyer P, Gustavson T L, Haritos K G, Kasevich M A 1993 Opt. Lett. 18 649

    [12]

    Szymaniec K, Ghezali S, Coghnet L, Clairon A 1997 Opt. Commun. 144 51

    [13]

    Liu S P, Zhang Y C, Zhang P F, Li G, Wang J M, Zhang T C 2009 Acta Phys. Sin. 58 285(in Chinese) [刘四平, 张玉驰, 张鹏飞, 李刚, 王军民, 张天才 2009 58 285]

    [14]

    Zhang Y C, Wang X Y, Li G, Wang J M, Zhang T C 2007 Acta Phys. Sin. 56 2202(in Chinese) [张玉驰, 王晓勇, 李刚, 王军民, 张天才 2007 56 2202]

    [15]

    Zhang Y F, Li G, Zhang Y C, Zhang P F, Wang J M, Zhang T C 2011 Acta Phys. Sin. 60 104206(in Chinese) [张艳峰, 李刚, 张玉驰, 张鹏飞, 王军民, 张天才 2011 60 104206]

    [16]

    Frese D, Ueberholz B, Kuhr S, Alt W, Schrader D, Gomer V, Meschede D 2000 Phys. Rev. Lett. 85 3777

    [17]

    Snadden M J, Clarke R B M, Riis E 1997 Opt. Lett. 22 892

    [18]

    Santarelli G, Clairon A, Lea S N, Tino G 1994 Opt. Commun. 104 339

    [19]

    Grimm R , Weidemuller M 1999 arxiv: Physics 9902072

    [20]

    Guo Y Q, Li G, Zhang Y F, Zhang P F, Wang J M, Zhang T C 2012 Sci. China: Phys. Mech. Astron. 55 1523

  • [1] 樊莉, 向柯赟, 沈君, 朱骏. 高峰值功率Nd:YLF/BaWO4正交偏振双波长拉曼激光器.  , 2022, 71(9): 094203. doi: 10.7498/aps.71.20211727
    [2] 喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐. 基于高速相位型空间光调制器的双光子多焦点结构光显微技术.  , 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [3] 段延敏, 周玉明, 孙瑛璐, 李志红, 张耀举, 王鸿雁, 朱海永. 声光调Q Nd:YVO4晶体级联拉曼倍频窄脉宽657 nm激光器.  , 2021, 70(22): 224209. doi: 10.7498/aps.70.20210695
    [4] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术.  , 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [5] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器.  , 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [6] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响.  , 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [7] 张蕴川, 樊莉, 魏晨飞, 顾晓敏, 任思贤. 波长锁定878.9 nm激光二极管抽运内腔式YVO4/BaWO4连续波拉曼激光器.  , 2018, 67(2): 024206. doi: 10.7498/aps.67.20171848
    [8] 粟荣涛, 张鹏飞, 周朴, 肖虎, 王小林, 段磊, 吕品, 许晓军. 窄线宽纳秒脉冲光纤拉曼放大器的理论模型和数值分析.  , 2018, 67(15): 154202. doi: 10.7498/aps.67.20172679
    [9] 张鑫, 张蕴川, 李建, 李仁杰, 宋庆坤, 张佳乐, 樊莉. 波长锁定激光二极管共振泵浦Nd:YVO4晶体连续波自拉曼激光器的设计与研究.  , 2017, 66(19): 194203. doi: 10.7498/aps.66.194203
    [10] 侯佳佳, 赵刚, 谭巍, 邱晓东, 贾梦源, 马维光, 张雷, 董磊, 冯晓霞, 尹王保, 肖连团, 贾锁堂. 基于压电陶瓷与光纤电光调制器双通道伺服反馈的激光相位锁定实验研究.  , 2016, 65(23): 234204. doi: 10.7498/aps.65.234204
    [11] 孟增明, 黄良辉, 彭鹏, 陈良超, 樊浩, 王鹏军, 张靖. 光学相位锁定激光在原子玻色-爱因斯坦凝聚中实现拉曼耦合.  , 2015, 64(24): 243202. doi: 10.7498/aps.64.243202
    [12] 王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁. 基于回音壁微腔拉曼激光的纳米粒子探测.  , 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [13] 樊莉, 陈海涛, 朱骏. 激光二极管抽运的Nd:YVO4连续自拉曼1175nm激光器.  , 2014, 63(15): 154208. doi: 10.7498/aps.63.154208
    [14] 杜军, 赵卫疆, 曲彦臣, 陈振雷, 耿利杰. 基于相位调制器与Fabry-Perot干涉仪的激光多普勒频移测量方法.  , 2013, 62(18): 184206. doi: 10.7498/aps.62.184206
    [15] 徐勇根, 王时建, 吉驭嫔, 徐竟跃, 卢宏, 刘晓旭, 张世昌. 拉曼型自由电子激光器中相对论电子运动稳定性的比较研究.  , 2013, 62(8): 084104. doi: 10.7498/aps.62.084104
    [16] 尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生. 拉锥型啁啾光纤光栅滤波器的研究.  , 2013, 62(21): 214213. doi: 10.7498/aps.62.214213
    [17] 陈鹤鸣, 孟晴. 高效光子晶体太赫兹滤波器的设计.  , 2011, 60(1): 014202. doi: 10.7498/aps.60.014202
    [18] 江微微, 范林勇, 赵瑞峰, 卫延, 裴丽, 简水生. 基于双芯光纤耦合器的梳状滤波器及其CO2激光调节.  , 2011, 60(4): 044214. doi: 10.7498/aps.60.044214
    [19] 张艳峰, 李刚, 张玉驰, 张鹏飞, 王军民, 张天才. 基于减反膜外腔反馈半导体激光器拉曼光的产生.  , 2011, 60(10): 104206. doi: 10.7498/aps.60.104206
    [20] 朱海永, 张戈, 张耀举, 黄呈辉, 段延敏, 魏勇, 尉鹏飞, 于永丽. LD端面抽运c切Nd:YVO4自拉曼倍频589 nm黄光激光研究.  , 2011, 60(9): 094209. doi: 10.7498/aps.60.094209
计量
  • 文章访问数:  6402
  • PDF下载量:  197
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-26
  • 修回日期:  2015-05-05
  • 刊出日期:  2015-09-05

/

返回文章
返回
Baidu
map