搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用信息流方法优化多激发自旋链中的量子态传输

陈俊 於亚飞 张智明

引用本文:
Citation:

利用信息流方法优化多激发自旋链中的量子态传输

陈俊, 於亚飞, 张智明

Optimizing quantum state transfer in multi-excitation spin chains via information flux

Chen Jun, Yu Ya-Fei, Zhang Zhi-Ming
PDF
导出引用
  • 研究了量子态在一条均匀耦合的反铁磁自旋链中传输时, 信道中自旋激发数变化对其传输性质的影响. 利用信息流方法分析输出端粒子的算符演化动力学, 获得了量子态传输的平均保真度与信道自旋初态之间的关系. 结果表明, 平均保真度的大小只依赖于信道中自旋激发数的奇偶性. 通过比较在奇偶激发信道中获得的最大平均保真度, 构建了优化信道来提升量子态在自旋链中的传输质量. 进一步分析了纠缠在激发信道中的传输情况, 发现纠缠的传输质量不仅和信道中自旋激发的具体个数有关, 还取决于激发自旋的初始排列. 特别地, 当信道中自旋无激发或全部激发时, 纠缠传输的大小和持续时间都优于其他的激发信道. 上述研究结果有助于在实际系统中搭建适合量子态和纠缠传输的量子信道.
    The transfer of quantum states between distant nodes is one of the most fundamental tasks in quantum-information processing. Recent studies show that the antiferromagnetic spin chain initially prepared in a multi-excitation state can provide suitable pathways for quantum state transfer. In this paper, we investigate the quality of state transfer through a uniformly coupled antiferromagnetic spin chain where the initial state of the channel varies with the number of spin excitations. Firstly, by analyzing the dynamics of observables for the output qubit using the information-flux approach, the explicit relation about how the average fidelity of state transfer depends on the initial state of the spin channel is obtained. The results show that the average fidelity of state transfer through a multi-excitation spin channel only relates to the parity of the number of spin excitations in the channel. Then we compare the maximum average fidelity of state transfer through the odd-excitation with those through the even-excitation spin channels, and provide a simple criterion to optimize the quality of state transfer by choosing appropriate channels from the odd-excitation and the even-excitation channels. Compared with the previous studies which initialize the chains into the ground state of the ferromagnetic medium or the Nel state, the maximum average fidelity of state transfer is evidently enhanced by using the optimized channel. Moreover, we analyze the entanglement distribution through the channel having different number of spin excitations via the information-flux approach. It is found that the quality of entanglement distribution not only relates to the number of initial spin excitations present in the channel, but also depends on the initial ordering of these excited spins. The numerical results suggest that the amount of distributed entanglement and duration of distribution in the channel where all spins are down or up are larger than those in other excited channels. Based on these results, we can choose appropriate quantum channels for state transfer and entanglement distribution in practice.
    • 基金项目: 国家自然科学基金重大研究计划(批准号:91121023)、国家自然科学基金(批准号: 61378012, 60978009)、高等学校博士学科点专项科研基金(批准号:20124407110009)、国家重点基础研究发展计划(批准号: 2011CBA00200, 2013CB921804)和国家教育部留学回国人员科研启动基金资助的课题.
    • Funds: Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 61378012, 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the the National Basic Research Program of China (Grant Nos. 2011CBA00200, 2013CB921804), and the Scientific Research Staring Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China.
    [1]

    Bose S 2003 Phys. Rev. Lett. 91 207901

    [2]

    Christandl M, Datta N, Ekert A, Landahl A J 2004 Phys. Rev. Lett. 92 187902

    [3]

    Albanese C, Christandl M, Datta N, Ekert A 2004 Phys. Rev. Lett. 93 230502

    [4]

    Shi T, Li Y, Song Z, Sun C P 2005 Phys. Rev. A 71 032309

    [5]

    Nikolopoulos G M, Petrosyan D, Lambropoulos P

    [6]

    Franco C D, Paternostro M, Kim M S 2008 Phys. Rev. Lett. 101 230502

    [7]

    Markiewicz M, Wiesniak M 2009 Phys. Rev. A 79 054304

    [8]

    Maruyama K, Iitaka T, Nori F 2007 Phys. Rev. A 75 012325

    [9]

    Zhang J, Shao B, Liu B Q 2011 Phys. Rev. A 84 012327

    [10]

    Wang Z M, Shao B, Chang P, Zou J 2007 J. Phys. A 40 9067

    [11]

    Zhang J, Shao B, Zou J, Li Q S 2011 Chin. Phys. B 20 100307

    [12]

    Banchi L, Apollaro T J G, Cuccoli A, Vaia R, Verrucchi P 2010 Phys. Rev. A 82 052321

    [13]

    Banchi L, Apollaro T J G, Cuccoli A, Vaia R, Verrucchi P 2011 New J. Phys. 13 123006

    [14]

    Apollaro T J G, Banchi L, Cuccoli A, Vaia R, Verrucchi P 2012 Phys. Rev. A 85 052319

    [15]

    Zeng T H, Shao B, Zou J 2009 Chin. Phys. Lett. 26 020313

    [16]

    Cai J M, Zhou Z W, Guo G C 2006 Phys. Rev. A 74 022328

    [17]

    Qin W, Li J L, Long G L 2015 Chin. Phys. B 24 040305

    [18]

    He Z, Yao C M, Zou J 2013 Phys. Rev. A 88 044304

    [19]

    Bayat A, Banchi L, Bose S, Verrucchi P 2011 Phys. Rev. A 83 062328

    [20]

    Liu Y, Zhou D L 2014 Phys. Rev. A 89 062331

    [21]

    Li J, Wu S H, Zhang W W, Xi X Q 2011 Chin. Phys. B 20 100308

    [22]

    Wu S H, Hu M L, Li J, Xi X Q 2011 Acta Phys. Sin. 60 010302 (in Chinese) [吴世海, 胡明亮, 李季, 惠小强 2011 60 010302]

    [23]

    Zhang Y Q, Xu J B 2012 Chin. Phys. B 21 010304

    [24]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021

    [25]

    Heinrich A J, Gupta J A, Lutz C P, Eigler D M

    [26]

    Wang Z M, Ma R S, C Allen Bishop, Gu Y J 2012 Phys. Rev. A 86 022330

    [27]

    Bayat A, Bose S 2010 Adv. Math. Phys. 2010 127182

    [28]

    Franco C D, Paternostro M, Palma G M, Kim M S 2007 Phys. Rev. A 76 042316

    [29]

    Franco C D, Paternostro M, Kim M S 2010 Phys. Rev. A 81 022319

    [30]

    Apollaro T J G, Cuccoli A, Franco C D, Paternostro M, Plastina F, Verrucchi P 2010 New J. Phys. 12 083046

    [31]

    Horodecki M, Horodecki P, Horodecki R 1999 Phys. Rev. A 60 1888

    [32]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [33]

    Xi Y X, Shan C J, Huang Y X 2014 Acta Phys. Sin. 63 110305 (in Chinese) [郗玉兴, 单传家, 黄燕霞 2014 63 110305]

    [34]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

    [35]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [36]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307

    [37]

    Weitenberg C, Endres M, Sherson J F, Cheneau M, Schau P, Fukuhara T, Bloch I, Kuhr S 2011 Nature 471 319

    [38]

    Zhao X, Zhao X D, Jing H 2013 Acta Phys. Sin. 62 060302 (in Chinese) [赵旭, 赵兴东, 景辉 2013 62 060302]

  • [1]

    Bose S 2003 Phys. Rev. Lett. 91 207901

    [2]

    Christandl M, Datta N, Ekert A, Landahl A J 2004 Phys. Rev. Lett. 92 187902

    [3]

    Albanese C, Christandl M, Datta N, Ekert A 2004 Phys. Rev. Lett. 93 230502

    [4]

    Shi T, Li Y, Song Z, Sun C P 2005 Phys. Rev. A 71 032309

    [5]

    Nikolopoulos G M, Petrosyan D, Lambropoulos P

    [6]

    Franco C D, Paternostro M, Kim M S 2008 Phys. Rev. Lett. 101 230502

    [7]

    Markiewicz M, Wiesniak M 2009 Phys. Rev. A 79 054304

    [8]

    Maruyama K, Iitaka T, Nori F 2007 Phys. Rev. A 75 012325

    [9]

    Zhang J, Shao B, Liu B Q 2011 Phys. Rev. A 84 012327

    [10]

    Wang Z M, Shao B, Chang P, Zou J 2007 J. Phys. A 40 9067

    [11]

    Zhang J, Shao B, Zou J, Li Q S 2011 Chin. Phys. B 20 100307

    [12]

    Banchi L, Apollaro T J G, Cuccoli A, Vaia R, Verrucchi P 2010 Phys. Rev. A 82 052321

    [13]

    Banchi L, Apollaro T J G, Cuccoli A, Vaia R, Verrucchi P 2011 New J. Phys. 13 123006

    [14]

    Apollaro T J G, Banchi L, Cuccoli A, Vaia R, Verrucchi P 2012 Phys. Rev. A 85 052319

    [15]

    Zeng T H, Shao B, Zou J 2009 Chin. Phys. Lett. 26 020313

    [16]

    Cai J M, Zhou Z W, Guo G C 2006 Phys. Rev. A 74 022328

    [17]

    Qin W, Li J L, Long G L 2015 Chin. Phys. B 24 040305

    [18]

    He Z, Yao C M, Zou J 2013 Phys. Rev. A 88 044304

    [19]

    Bayat A, Banchi L, Bose S, Verrucchi P 2011 Phys. Rev. A 83 062328

    [20]

    Liu Y, Zhou D L 2014 Phys. Rev. A 89 062331

    [21]

    Li J, Wu S H, Zhang W W, Xi X Q 2011 Chin. Phys. B 20 100308

    [22]

    Wu S H, Hu M L, Li J, Xi X Q 2011 Acta Phys. Sin. 60 010302 (in Chinese) [吴世海, 胡明亮, 李季, 惠小强 2011 60 010302]

    [23]

    Zhang Y Q, Xu J B 2012 Chin. Phys. B 21 010304

    [24]

    Hirjibehedin C F, Lutz C P, Heinrich A J 2006 Science 312 1021

    [25]

    Heinrich A J, Gupta J A, Lutz C P, Eigler D M

    [26]

    Wang Z M, Ma R S, C Allen Bishop, Gu Y J 2012 Phys. Rev. A 86 022330

    [27]

    Bayat A, Bose S 2010 Adv. Math. Phys. 2010 127182

    [28]

    Franco C D, Paternostro M, Palma G M, Kim M S 2007 Phys. Rev. A 76 042316

    [29]

    Franco C D, Paternostro M, Kim M S 2010 Phys. Rev. A 81 022319

    [30]

    Apollaro T J G, Cuccoli A, Franco C D, Paternostro M, Plastina F, Verrucchi P 2010 New J. Phys. 12 083046

    [31]

    Horodecki M, Horodecki P, Horodecki R 1999 Phys. Rev. A 60 1888

    [32]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895

    [33]

    Xi Y X, Shan C J, Huang Y X 2014 Acta Phys. Sin. 63 110305 (in Chinese) [郗玉兴, 单传家, 黄燕霞 2014 63 110305]

    [34]

    Jennewein T, Simon C, Weihs G, Weinfurter H, Zeilinger A 2000 Phys. Rev. Lett. 84 4729

    [35]

    Wootters W K 1998 Phys. Rev. Lett. 80 2245

    [36]

    Simon J, Bakr W S, Ma R, Tai M E, Preiss P M, Greiner M 2011 Nature 472 307

    [37]

    Weitenberg C, Endres M, Sherson J F, Cheneau M, Schau P, Fukuhara T, Bloch I, Kuhr S 2011 Nature 471 319

    [38]

    Zhao X, Zhao X D, Jing H 2013 Acta Phys. Sin. 62 060302 (in Chinese) [赵旭, 赵兴东, 景辉 2013 62 060302]

  • [1] 劳斌, 郑轩, 李晟, 汪志明. 过渡金属氧化物中新奇量子态与电荷-自旋互转换研究进展.  , 2023, 72(9): 097702. doi: 10.7498/aps.72.20222219
    [2] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息.  , 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [3] 廖骎, 柳海杰, 王铮, 朱凌瑾. 基于不可信纠缠源的高斯调制连续变量量子密钥分发.  , 2023, 72(4): 040301. doi: 10.7498/aps.72.20221902
    [4] 赖红. 基于广义等距张量的压缩多光子纠缠态量子密钥分发.  , 2023, 72(17): 170301. doi: 10.7498/aps.72.20230589
    [5] 赵豪, 冯晋霞, 孙婧可, 李渊骥, 张宽收. 连续变量Einstein-Podolsky-Rosen纠缠态光场在光纤信道中分发时纠缠的鲁棒性.  , 2022, 71(9): 094202. doi: 10.7498/aps.71.20212380
    [6] 李建新. 自旋涨落与非常规超导配对.  , 2021, 70(1): 017408. doi: 10.7498/aps.70.20202180
    [7] 林智远, 申威, 苏山河, 陈金灿. 库仑耦合双量子点系统的熵产生率.  , 2020, 69(13): 130501. doi: 10.7498/aps.69.20191879
    [8] 田聪, 鹿翔, 张英杰, 夏云杰. 纠缠相干光场对量子态最大演化速率的操控.  , 2019, 68(15): 150301. doi: 10.7498/aps.68.20190385
    [9] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学.  , 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [10] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩.  , 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [11] 李世超, 甘远, 王靖珲, 冉柯静, 温锦生. 铁基超导体Fe1+yTe1-xSex中磁性的中子散射研究.  , 2015, 64(9): 097503. doi: 10.7498/aps.64.097503
    [12] 邢修三. 论动态信息理论.  , 2014, 63(23): 230201. doi: 10.7498/aps.63.230201
    [13] 孙新梅, 查新未, 祁建霞, 兰倩. 基于非最大纠缠的五粒子Cluster态的高效量子态共享方案.  , 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [14] 薛乐, 聂敏, 刘晓慧. 量子信令中继器模型及性能仿真.  , 2013, 62(17): 170305. doi: 10.7498/aps.62.170305
    [15] 刘小娟, 周并举, 刘一曼, 姜春蕾. 运动双原子与光场依赖强度耦合系统中的纠缠操纵与量子态制备.  , 2012, 61(23): 230301. doi: 10.7498/aps.61.230301
    [16] 印娟, 雍海林, 吴裕平, 彭承志. 基于高损耗信道的纠缠分发实验模拟.  , 2011, 60(6): 060307. doi: 10.7498/aps.60.060307
    [17] 吴世海, 胡明亮, 李季, 惠小强. 用约瑟夫森电荷比特系统实现一种特殊量子态的传输.  , 2011, 60(1): 010302. doi: 10.7498/aps.60.010302
    [18] 胡明亮, 惠小强. 计算自旋-s算子幺正演化矩阵ds(t)的新方法及其应用.  , 2008, 57(6): 3319-3323. doi: 10.7498/aps.57.3319
    [19] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发.  , 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [20] 刘堂昆, 王继锁, 柳晓军, 詹明生. 纠缠态原子偶极间相互作用对量子态保真度的影响.  , 2000, 49(4): 708-712. doi: 10.7498/aps.49.708
计量
  • 文章访问数:  6337
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-19
  • 修回日期:  2015-05-12
  • 刊出日期:  2015-08-05

/

返回文章
返回
Baidu
map