-
本文设计了一种通过在版图布局中引入伪集电极的方法来提高锗硅异质结双极晶体管(SiGe HBT)抗单粒子性能的方法. 利用半导体器件模拟工具, 针对加固前后的SiGe HBT开展了单粒子效应仿真模拟, 分析了伪集电极对SiGe HBT电荷收集机理的影响. 结果表明, 引入的伪集电极形成的新的集电极-衬底结具有较大的反偏能力, 加固后SiGe HBT伪集电极通过扩散机理, 大量收集单粒子效应产生的电荷, 有效地减少了实际集电极的电荷收集量, 发射极、基极电荷收集量也有不同程度的降低, 加固设计后SiGe HBT 的单粒子效应敏感区域缩小, 有效的提高了SiGe HBT 器件抗单粒子效应辐射性能. 此项工作的开展为SiGe HBT电路级单粒子效应抗辐射加固设计打下良好的基础.
-
关键词:
- 锗硅异质结双极晶体管 /
- 单粒子效应 /
- 加固设计 /
- 伪集电极
With the rapid development of satellite, manned space flight and deep space exploration technology, semiconductor devices are used in extreme environments, especially in radiation and low temperature environment. SiGe HBT is a potential candidate for space applications because of its inherent robustness to total ionizing dose (TID) radiation. However, due primarily to charge collection through the collector-substrate (CS) junction and the relatively low substrate doping., SiGe HBTs are vulnerable to single event effects (SEEs) because of new features of process and structure. Thus, the SEE becomes a key factor in restricting space applications of SiGe HBTs. This paper presents an SEE hardening approach that uses a dummy collector to reduce charge collection in the SiGe HBT. The dummy collector is obtained by using the silicon space between adjacent HBTs. It is obtained without any process modification or area penalty. At first, we build simulation models for both normal and hardened SiGe HBTs, and then carry out SEE simulations respectively. The charge collection mechanism is obtained by analyzing the transient current and charge collection changes at different ion incident positions. Unlike the normal HBT, we can see that charge is continuously collected by the dummy CS junction. This causes more charges diffuse outward and the charges available for collector terminal to be reduced. For all ion incident positions, in the case of hardening, the drift components of charge collection are approximately the same, while the diffusion charge collection components are nearly completely compressed. During SEE, the CS junction either directly collects the deposited charges through drift within the potential funnel or indirectly collects charges after they have arrived at the junction after diffusion. The diffusion length of the carriers is on the order of tens of microns or more. Hence a dummy CS junction should be able to reduce the quantity of diffusive charges collected by the HBT collector. The actual charges collected by the collector are effectively reduced. The emitter and base charge collection also decrease by the dummy collector to different extents. Dummy-collector effectively mitigates the SEE of SiGe HBT. The SEE sensitive area of SiGe HBT is also effectively reduced by half. This work is carried out for the SiGe HBT circuit level radiation hardening design of single event effects-
Keywords:
- SiGe heterojunction bipolar transistor /
- single event effect /
- hardening design /
- dummy collector
[1] Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 1992
[2] Cressler J D 2005 Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting Santa Barbara, October 9-11, 2005 p248
[3] Cressler J D, Niu G F 2003 Silicon-germanium heterojunction bipolar transistors (Norwood:Artech House) pp95-182
[4] Babcock J A, Cressler J D, Vempati L S, Clark S D, Jaeger R C, Harame D L 1995 IEEE Trans. Nucl. Sci. 42 1558
[5] Lu Y, Cressler J D, Krithivasan R, Li Y, Reed R A, Marshall P W, Polar C, Freeman G, Ahlgren D 2003 IEEE Trans. Nucl. Sci. 50 1811
[6] Sutton A K, Haugerud B M, Prakash A P G, Jun B, Cressler J D, Marshall C J, Marshall P W, Ladbury R, Joseph A J 2005 IEEE Trans. Nucl. Sci. 52 2358
[7] Sutton A K, Prakash A P G, Jun B, Enhai Zhao, Bellini M, Pellish J, Diestelhorst R M, Carts M A, Phan A, Ladbury R, Cressler J D, Marshall P W, Marshall C J, Reed R A, Schrimpf R D, Fleetwood D M 2006 IEEE Trans. Nucl. Sci. 53 3166
[8] Krithivasan R, Niu G F, Cressler J D, Currie S M, Fritz K E, Reed R A, Marshall P W, Riggs P A, Randall B A, Gilbert B 2003 IEEE Trans. Nucl. Sci. 50 2126
[9] Krithivasan R, Marshall P W, Nayeem M, Sutton A K, Wei-Min Kuo, Haugerud B M, Najafizadeh L, Cressler J D, Carts M A, Marshall C J, Hansen D L, Jobe K C M, McKay A L, Niu G F, Reed R A, Randall B A, Burfield C A, Lindberg M D, Gilbert B K, Daniel E S IEEE Trans. Nucl. Sci. 53 3400
[10] Reed R A, Marshall P W, Pickel J C, Carts M A, Fodness B, Niu G F, Fritz K, Vizkelethy G, Dodd P E, Irwin T L, Cressler J D, Krithivasan R, Riggs P A, Prairie J, Randall B A, Gilbert B K, Label K A 2003 IEEE Trans. Nucl. Sci. 50 2184
[11] Sutton A K, Bellini M, Cressler J D, Pellish J A, Reed R A, Marshall P W, Niu G F, Vizkelethy G, Turowski M, Raman A 2007 IEEE Trans. Nucl. Sci. 54 2044
[12] Marshall P W, Carts M A, Campbell A, McMorrow D, Buchner S, Stewart Ryan, Randall B, Gilbert Barry, Reed R A IEEE Trans. Nucl. Sci. 47 2669
[13] Niu G F, Yang H, Varadharajaperumal M, Shi Y, Cressler J D, Krithivasan R, Marshall P W, Reed R A 2005 IEEE Trans. Nucl. Sci. 52 2153
[14] Varadharajaperumal M, Niu G F, Wei X Y, Zhang T, Cressler J D, Reed R A, Marshall P W 2007 IEEE Trans. Nucl. Sci. 54 2330
[15] Varadharajaperumal M 2010 Ph.D. Dissertation (Alabama:Auburn University)
[16] Sutton A K, Bellini M, Cressler J D, Pellish J A, Reed R A, Marshall P W, Niu G f, Vizkelethy G, Turowski M, Raman A 2007 IEEE Trans. Nucl. Sci. 54 2044
[17] Phillips S D, Moen K A, Najafizadeh L, Diestelhorst R M, Sutton A K, Cressler J D, Vizkelethy G, Dodd P E, Marshall P W 2010 IEEE Trans. Nucl. Sci. 57 3400
[18] Zhang T 2009 MS Dissertation (Alabama:Auburn University)
[19] Phillips S D 2012 Ph.D. Dissertation (Georgia:Georgia Institute of Technology)
[20] Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 62 048501]
[21] Lai F, Hu G Y 2013 Microelectronics 43 0094 (in Chinese) [赖凡, 胡刚毅 2013 微电子学 43 0094]
[22] Liu Z, Chen S M, Liang B, Liu B W, Zhao Z Y 2010 Acta Phys. Sin. 59 064906 (in Chinese) [刘征, 陈书明, 梁斌, 刘必慰, 赵振宇 2010 59 064906]
[23] Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Acta Phys. Sin. 62 196104 (in Chinese) [孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘 2013 62 196104]
-
[1] Cressler J D 2013 IEEE Trans. Nucl. Sci. 60 1992
[2] Cressler J D 2005 Proceedings of the Bipolar/BiCMOS Circuits and Technology Meeting Santa Barbara, October 9-11, 2005 p248
[3] Cressler J D, Niu G F 2003 Silicon-germanium heterojunction bipolar transistors (Norwood:Artech House) pp95-182
[4] Babcock J A, Cressler J D, Vempati L S, Clark S D, Jaeger R C, Harame D L 1995 IEEE Trans. Nucl. Sci. 42 1558
[5] Lu Y, Cressler J D, Krithivasan R, Li Y, Reed R A, Marshall P W, Polar C, Freeman G, Ahlgren D 2003 IEEE Trans. Nucl. Sci. 50 1811
[6] Sutton A K, Haugerud B M, Prakash A P G, Jun B, Cressler J D, Marshall C J, Marshall P W, Ladbury R, Joseph A J 2005 IEEE Trans. Nucl. Sci. 52 2358
[7] Sutton A K, Prakash A P G, Jun B, Enhai Zhao, Bellini M, Pellish J, Diestelhorst R M, Carts M A, Phan A, Ladbury R, Cressler J D, Marshall P W, Marshall C J, Reed R A, Schrimpf R D, Fleetwood D M 2006 IEEE Trans. Nucl. Sci. 53 3166
[8] Krithivasan R, Niu G F, Cressler J D, Currie S M, Fritz K E, Reed R A, Marshall P W, Riggs P A, Randall B A, Gilbert B 2003 IEEE Trans. Nucl. Sci. 50 2126
[9] Krithivasan R, Marshall P W, Nayeem M, Sutton A K, Wei-Min Kuo, Haugerud B M, Najafizadeh L, Cressler J D, Carts M A, Marshall C J, Hansen D L, Jobe K C M, McKay A L, Niu G F, Reed R A, Randall B A, Burfield C A, Lindberg M D, Gilbert B K, Daniel E S IEEE Trans. Nucl. Sci. 53 3400
[10] Reed R A, Marshall P W, Pickel J C, Carts M A, Fodness B, Niu G F, Fritz K, Vizkelethy G, Dodd P E, Irwin T L, Cressler J D, Krithivasan R, Riggs P A, Prairie J, Randall B A, Gilbert B K, Label K A 2003 IEEE Trans. Nucl. Sci. 50 2184
[11] Sutton A K, Bellini M, Cressler J D, Pellish J A, Reed R A, Marshall P W, Niu G F, Vizkelethy G, Turowski M, Raman A 2007 IEEE Trans. Nucl. Sci. 54 2044
[12] Marshall P W, Carts M A, Campbell A, McMorrow D, Buchner S, Stewart Ryan, Randall B, Gilbert Barry, Reed R A IEEE Trans. Nucl. Sci. 47 2669
[13] Niu G F, Yang H, Varadharajaperumal M, Shi Y, Cressler J D, Krithivasan R, Marshall P W, Reed R A 2005 IEEE Trans. Nucl. Sci. 52 2153
[14] Varadharajaperumal M, Niu G F, Wei X Y, Zhang T, Cressler J D, Reed R A, Marshall P W 2007 IEEE Trans. Nucl. Sci. 54 2330
[15] Varadharajaperumal M 2010 Ph.D. Dissertation (Alabama:Auburn University)
[16] Sutton A K, Bellini M, Cressler J D, Pellish J A, Reed R A, Marshall P W, Niu G f, Vizkelethy G, Turowski M, Raman A 2007 IEEE Trans. Nucl. Sci. 54 2044
[17] Phillips S D, Moen K A, Najafizadeh L, Diestelhorst R M, Sutton A K, Cressler J D, Vizkelethy G, Dodd P E, Marshall P W 2010 IEEE Trans. Nucl. Sci. 57 3400
[18] Zhang T 2009 MS Dissertation (Alabama:Auburn University)
[19] Phillips S D 2012 Ph.D. Dissertation (Georgia:Georgia Institute of Technology)
[20] Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 62 048501]
[21] Lai F, Hu G Y 2013 Microelectronics 43 0094 (in Chinese) [赖凡, 胡刚毅 2013 微电子学 43 0094]
[22] Liu Z, Chen S M, Liang B, Liu B W, Zhao Z Y 2010 Acta Phys. Sin. 59 064906 (in Chinese) [刘征, 陈书明, 梁斌, 刘必慰, 赵振宇 2010 59 064906]
[23] Sun Y B, Fu J, Xu J, Wang Y D, Zhou W, Zhang W, Cui J, Li G Q, Liu Z H 2013 Acta Phys. Sin. 62 196104 (in Chinese) [孙亚宾, 付军, 许军, 王玉东, 周卫, 张伟, 崔杰, 李高庆, 刘志弘 2013 62 196104]
计量
- 文章访问数: 6582
- PDF下载量: 216
- 被引次数: 0