搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用温变电容特性测量发光二极管结温的研究

招瑜 魏爱香 刘俊

引用本文:
Citation:

利用温变电容特性测量发光二极管结温的研究

招瑜, 魏爱香, 刘俊

Junction temperature measurement of light-emitting diodes using temperature-dependent capacitance

Zhao Yu, Wei Ai-Xiang, Liu Jun
PDF
导出引用
  • 结区的温度, 简称结温, 是发光二极管(LED) 的重要参数之一, 它对LED 器件的出光效率、光色、器件可靠性和寿命均有很大影响, 准确测量LED 器件的结温对制备LED 芯片、器件封装和应用有着重要的意义. 本文利用反向偏压下的LED的势垒电容随温度变化的特性, 提出了一种LED结温测量的新方法. 论文首先测量和分析了LED在室温下反向偏压时的电容-电压(C-V)曲线和不同反向偏压下的电容-温度(C-T)曲线, 结果表明, 在合适的偏压下, LED的电容随温度的增大而显著增加, 并呈现良好的线性关系. 在LED工作中监测其电容的变化, 并与C-T曲线进行对比, 实现了LED结温的测量, 其测量结果和传统的正向电压法的结果相对比, 两者符合较好. 最后, 利用上述方法测量了LED 在恒流和恒压条件下的结温的实时变化过程. 较传统的结温测量方法, 本方法的优点在于只须要一次定标测量, 且可实现LED在任意电压和电流下的结温测量.
    Junction temperature, as one of the most important properties of light-emitting diodes (LEDs), has great impact on LEDs’ power efficiency, luminosity, reliability, life-time, and so on. Precise measurement of junction temperature for LED device is quite important in the research of chip’s fabrication, device packaging and related applications. In this paper, we propose a new approach to measure the junction temperature of LEDs by using temperature-dependent capacitance. The capacitance of white LEDs at room temperature is measured and found to be decreased first and then increased with an increasing reverse bias. Equivalent model using vertical and horizontal capacitances connected in parallel is proposed to qualitatively explain the variation of capacitance under different reverse bias. Result obtained from the model fitting agrees well with the experimental result. The capacitance-temperature (C-T) curve of white LEDs under different reverse bias is measured and analysed. Results show that the capacitance of LEDs is sensitive to temperature at all biases. Under a reverse voltage of 0.5 V, the capacitance has the maximal response of 1.971 pF/℃ and a good linear temperature-dependent property. The C-T curve is used as the calibration for the measurement of junction temperature. By monitoring the change of capacitance of the working LEDs and comparing it with the C-T curve, the junction temperature of the LED device is successfully measured. The junction temperature of a white LED obtained by the proposed C-T method is compared with that by tranditional forward voltage method, and they are in good agreement. The C-T method is also used to measure the real-time junction temperatures of white LEDs under a constant current of 350 mA and a constant voltage of 3.2 V, respectively. In both conditions, the junction temperature of an LED needs approximately 110 sec to rise from room temperature to a steady value, and subsequently needs approximately 500 sec to fall back to room temperature after the LED is turned off. Compared with traditional methods, C-T method only needs to measure one calibration and this calibration can be applied to LEDs working at any current and voltage. Therefore, C-T method is a simple and flexible alternative to the existing technique of temperature measurement in electronic device.
    • 基金项目: 国家自然科学基金(批准号:61204049)、广东省自然科学基金(批准号:S2012040007363)和广东省教育厅育苗工程(自然科学)项目(批准号:2012LYM_0058)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61204049), the Natural Science Foundation of Guangdong Province, China (Grant No. S2012040007363), and the Foundation for Distinguished Young Talents in Higher Education of Guangdong, China (Grant No. 2012LYM_0058).
    [1]

    Jiang R, Lu H, Chen D J, Ren F F, Yan D W, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 047805

    [2]

    Zhong C T, Yu T J, Yan J, Chen Z Z, Zhang G Y 2013 Chin. Phys. B 22 117804

    [3]

    Xi Y, Schubert E F 2004 Appl. Phys. Lett. 85 2163

    [4]

    Xi Y, Xi J Q, Gessmann T, Shah J M, Kim J K., Schubert E F 2005 Appl. Phys. Lett. 86 031907

    [5]

    Ryu H, Ha K, Chae J, Nam O, Park Y 2005 Appl. Phys. Lett. 87 093506

    [6]

    He S M, Luo X D, Zhang B, Fu L, Cheng L W, Wang J B, Lu W 2012 Chin. Phys. Lett. 29 127802

    [7]

    Arik M, Weaver S 2004 4th Int. Conf. on Solid State Lighting Denver, USA, August 20, 2004 p214-23

    [8]

    Senawiratne J, Li Y, Zhu M, Xia Y, Zhao W, Detchprohm T, Chatterjee A, Plawsky J L, Wetze C 2008 J. Electron. Mater. 37 607

    [9]

    Chen H P, Chen H P, Cao J S, Guo S X 2013 Acta Phys. Sin. 62 104209 (in Chinese) [陈海鹏, 曹军胜, 郭树旭 2013 62 104209]

    [10]

    Chen N C, Wang Y N, Tseng C Y, Yang Y K 2006 Appl. Phys. Lett. 89 101114

    [11]

    Lin Y, Gao Y L, Lu Y J, Zhu L H, Zhang Y, Chen Z 2012 Appl. Phys. Lett. 100 202108

    [12]

    Zhao Y, Zhong W, Liu J, Huang Z, Wei A 2014 Semicond. Sci. Technol. 29 035008

    [13]

    Zhong W, Wei A, Zhao Y 2013 Chinese Journal of Luminescence 34 1203 (in Chinese) [钟文姣, 魏爱香, 招瑜 2013 发光学报 34 1203]

    [14]

    Chhajed S, Xi Y, Gessmann T, Xi J Q, Shah J M, Kim J K, Schubert E F 2005 Proc. SPIE 5739, Light-Emitting Diodes:Research, Manufacturing and Applications IX San Jose, USA, January 25-27, 2005 p16

    [15]

    Gao J X, Zhang Y M, Tang X Y, Zhang Y M 2006 Acta Phys. Sin. 55 2992 (in Chinese) [郜锦侠, 张义门, 汤晓燕, 张玉明 2006 55 2992]

    [16]

    Arias J, Esquivias I, Ralston J D, Larkins E C, Weisser S, Rosenzweig J, Schönfelder A, Maier M 1996 Appl. Phys. Lett. 68 1138

    [17]

    Soltanovich O, Yakimov E 2013 Phys. Status Solidi C 10 338

    [18]

    Feng L F, Li Y, Li D, Wang C D, Zhang G Y, Yao D S, Liu W F, Xing P F 2011 Chin. Phys. Lett. 28 107801

    [19]

    Soltanovich O A, Shmidt N M, Yakimov E B 2011 Semiconductors 45 221

    [20]

    Pierret R F 1996 Semiconductor Device Fundamentals (1st International edition) (London:Pearson Educacion) p305

  • [1]

    Jiang R, Lu H, Chen D J, Ren F F, Yan D W, Zhang R, Zheng Y D 2013 Chin. Phys. B 22 047805

    [2]

    Zhong C T, Yu T J, Yan J, Chen Z Z, Zhang G Y 2013 Chin. Phys. B 22 117804

    [3]

    Xi Y, Schubert E F 2004 Appl. Phys. Lett. 85 2163

    [4]

    Xi Y, Xi J Q, Gessmann T, Shah J M, Kim J K., Schubert E F 2005 Appl. Phys. Lett. 86 031907

    [5]

    Ryu H, Ha K, Chae J, Nam O, Park Y 2005 Appl. Phys. Lett. 87 093506

    [6]

    He S M, Luo X D, Zhang B, Fu L, Cheng L W, Wang J B, Lu W 2012 Chin. Phys. Lett. 29 127802

    [7]

    Arik M, Weaver S 2004 4th Int. Conf. on Solid State Lighting Denver, USA, August 20, 2004 p214-23

    [8]

    Senawiratne J, Li Y, Zhu M, Xia Y, Zhao W, Detchprohm T, Chatterjee A, Plawsky J L, Wetze C 2008 J. Electron. Mater. 37 607

    [9]

    Chen H P, Chen H P, Cao J S, Guo S X 2013 Acta Phys. Sin. 62 104209 (in Chinese) [陈海鹏, 曹军胜, 郭树旭 2013 62 104209]

    [10]

    Chen N C, Wang Y N, Tseng C Y, Yang Y K 2006 Appl. Phys. Lett. 89 101114

    [11]

    Lin Y, Gao Y L, Lu Y J, Zhu L H, Zhang Y, Chen Z 2012 Appl. Phys. Lett. 100 202108

    [12]

    Zhao Y, Zhong W, Liu J, Huang Z, Wei A 2014 Semicond. Sci. Technol. 29 035008

    [13]

    Zhong W, Wei A, Zhao Y 2013 Chinese Journal of Luminescence 34 1203 (in Chinese) [钟文姣, 魏爱香, 招瑜 2013 发光学报 34 1203]

    [14]

    Chhajed S, Xi Y, Gessmann T, Xi J Q, Shah J M, Kim J K, Schubert E F 2005 Proc. SPIE 5739, Light-Emitting Diodes:Research, Manufacturing and Applications IX San Jose, USA, January 25-27, 2005 p16

    [15]

    Gao J X, Zhang Y M, Tang X Y, Zhang Y M 2006 Acta Phys. Sin. 55 2992 (in Chinese) [郜锦侠, 张义门, 汤晓燕, 张玉明 2006 55 2992]

    [16]

    Arias J, Esquivias I, Ralston J D, Larkins E C, Weisser S, Rosenzweig J, Schönfelder A, Maier M 1996 Appl. Phys. Lett. 68 1138

    [17]

    Soltanovich O, Yakimov E 2013 Phys. Status Solidi C 10 338

    [18]

    Feng L F, Li Y, Li D, Wang C D, Zhang G Y, Yao D S, Liu W F, Xing P F 2011 Chin. Phys. Lett. 28 107801

    [19]

    Soltanovich O A, Shmidt N M, Yakimov E B 2011 Semiconductors 45 221

    [20]

    Pierret R F 1996 Semiconductor Device Fundamentals (1st International edition) (London:Pearson Educacion) p305

  • [1] 赵建铖, 吴朝兴, 郭太良. 无注入型发光二极管的载流子输运模型研究.  , 2023, 72(4): 048503. doi: 10.7498/aps.72.20221831
    [2] 蒋福春, 刘瑞友, 彭冬生, 刘文, 柴广跃, 李百奎, 武红磊. 基于光谱法的发光二极管稳态热阻测量方法.  , 2021, 70(9): 098501. doi: 10.7498/aps.70.20201093
    [3] 陈佳楣, 苏杭, 李婉, 张立来, 索鑫磊, 钦敬, 朱坤, 李国龙. 钙钛矿发光二极管光提取性能增强的研究进展.  , 2020, 69(21): 218501. doi: 10.7498/aps.69.20200755
    [4] 王党会, 许天旱. 蓝紫光发光二极管中的低频产生-复合噪声行为研究.  , 2019, 68(12): 128104. doi: 10.7498/aps.68.20190189
    [5] 瞿子涵, 储泽马, 张兴旺, 游经碧. 高效绿光钙钛矿发光二极管研究进展.  , 2019, 68(15): 158504. doi: 10.7498/aps.68.20190647
    [6] 郭春生, 丁嫣, 姜舶洋, 廖之恒, 苏雅, 冯士维. 高效在线测量加速实验中双极晶体管结温方法的研究.  , 2017, 66(22): 224703. doi: 10.7498/aps.66.224703
    [7] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征.  , 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [8] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响.  , 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [9] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展.  , 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [10] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究.  , 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [11] 王光绪, 陶喜霞, 熊传兵, 刘军林, 封飞飞, 张萌, 江风益. 牺牲Ni退火对硅衬底GaN基发光二极管p型接触影响的研究.  , 2011, 60(7): 078503. doi: 10.7498/aps.60.078503
    [12] 陈依新, 沈光地, 高志远, 郭伟玲, 张光沉, 韩军, 朱彦旭. AlGaInP大功率发光二极管发光效率与结温的关系.  , 2011, 60(8): 087206. doi: 10.7498/aps.60.087206
    [13] 薛正群, 黄生荣, 张保平, 陈朝. 激光诱导p-GaN掺杂对发光二极管性能改善的分析.  , 2010, 59(2): 1268-1274. doi: 10.7498/aps.59.1268
    [14] 朱丽虹, 蔡加法, 李晓莹, 邓彪, 刘宝林. In组分渐变提高InGaN/GaN多量子阱发光二极管发光性能.  , 2010, 59(7): 4996-5001. doi: 10.7498/aps.59.4996
    [15] 李为军, 张波, 徐文兰, 陆卫. InGaN/GaN多量子阱蓝色发光二极管的实验与模拟分析.  , 2009, 58(5): 3421-3426. doi: 10.7498/aps.58.3421
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究.  , 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] 沈光地, 张剑铭, 邹德恕, 徐 晨, 顾晓玲. 大功率GaN基发光二极管的电流扩展效应及电极结构优化研究.  , 2008, 57(1): 472-476. doi: 10.7498/aps.57.472
    [18] 张剑铭, 邹德恕, 徐 晨, 顾晓玲, 沈光地. 电极结构优化对大功率GaN基发光二极管性能的影响.  , 2007, 56(10): 6003-6007. doi: 10.7498/aps.56.6003
    [19] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究.  , 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [20] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征.  , 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
计量
  • 文章访问数:  6548
  • PDF下载量:  757
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-12-03
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map